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Are you ready for a concise book packed with insight and wisdom not found elsewhere? Do 
you want to gain a deeper understanding of the Java programming language? Do you want to 
write code that is clear, correct, robust, and reusable? Look no further! This book will provide 
you with these and many other benefits you may not even know you were looking for. 
 
Featuring fifty-seven valuable rules of thumb, Effective Java Programming Language Guide 
contains working solutions to the programming challenges most developers encounter each 
day. Offering comprehensive descriptions of techniques used by the experts who developed 
the Java platform, this book reveals what to do - and what not to do - in order to produce 
clear, robust and efficient code. 
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Foreword 
 

If a colleague were to say to you, “Spouse of me this night today manufactures the unusual 
meal in a home. You will join?” three things would likely cross your mind: third, that you had 
been invited to dinner; second, that English was not your colleague's first language; and first, 
a good deal of puzzlement. 

If you have ever studied a second language yourself and then tried to use it outside the 
classroom, you know that there are three things you must master: how the language is 
structured (grammar), how to name things you want to talk about (vocabulary), and the 
customary and effective ways to say everyday things (usage). Too often only the first two are 
covered in the classroom, and you find native speakers constantly suppressing their laughter 
as you try to make yourself understood. 

It is much the same with a programming language. You need to understand the core language: 
is it algorithmic, functional, object-oriented? You need to know the vocabulary: what data 
structures, operations, and facilities are provided by the standard libraries? And you need to 
be familiar with the customary and effective ways to structure your code. Books about 
programming languages often cover only the first two, or discuss usage only spottily. Maybe 
that's because the first two are in some ways easier to write about. Grammar and vocabulary 
are properties of the language alone, but usage is characteristic of a community that uses it. 

The Java programming language, for example, is object-oriented with single inheritance and 
supports an imperative (statement-oriented) coding style within each method. The libraries 
address graphic display support, networking, distributed computing, and security. But how is 
the language best put to use in practice? 

There is another point. Programs, unlike spoken sentences and unlike most books and 
magazines, are likely to be changed over time. It's typically not enough to produce code that 
operates effectively and is readily understood by other persons; one must also organize the 
code so that it is easy to modify. There may be ten ways to write code for some task T. Of 
those ten ways, seven will be awkward, inefficient, or puzzling. Of the other three, which is 
most likely to be similar to the code needed for the task T' in next year's software release? 

There are numerous books from which you can learn the grammar of the Java Programming 
Language, including The Java Programming Language by Arnold, Gosling, and Holmes 
[Arnold00] or The Java Language Specification by Gosling, Joy, yours truly, and Bracha 
[JLS]. Likewise, there are dozens of books on the libraries and APIs associated with the Java 
programming language. 

 

This book addresses your third need: customary and effective usage. Joshua Bloch has spent 
years extending, implementing, and using the Java programming language at Sun 
Microsystems; he has also read a lot of other people's code, including mine. Here he offers 
good advice, systematically organized, on how to structure your code so that it works well, so 
that other people can understand it, so that future modifications and improvements are less 
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likely to cause headaches—perhaps, even, so that your programs will be pleasant, elegant, and 
graceful. 

Guy L. Steele Jr. 
Burlington, Massachusetts 
April 2001 
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Preface 
In 1996 I pulled up stakes and headed west to work for JavaSoft, as it was then known, 
because it was clear that that was where the action was. In the intervening five years I've 
served as Java platform libraries architect. I've designed, implemented, and maintained many 
of the libraries and served as a consultant for many others. Presiding over these libraries as the 
Java platform matured was a once-in-a-lifetime opportunity. It is no exaggeration to say that 
I had the privilege to work with some of the great software engineers of our generation. In the 
process, I learned a lot about the Java programming language—what works, what doesn't, and 
how to use the language and its libraries to best effect. 

This book is my attempt to share my experience with you so that you can imitate my 
successes while avoiding my failures. I borrowed the format from Scott Meyers's Effective 
C++ [Meyers98], which consists of fifty items, each conveying one specific rule for 
improving your programs and designs. I found the format to be singularly effective, and 
I hope you do too. 

In many cases, I took the liberty of illustrating the items with real-world examples from 
the Java platform libraries. When describing something that could have been done better, 
I tried to pick on code that I wrote myself, but occasionally I pick on something written by 
a colleague. I sincerely apologize if, despite my best efforts, I've offended anyone. Negative 
examples are cited not to cast blame but in the spirit of cooperation, so that all of us can 
benefit from the experience of those who've gone before. 

While this book is not targeted solely at developers of reusable components, it is inevitably 
colored by my experience writing such components over the past two decades. I naturally 
think in terms of exported APIs (Application Programming Interfaces), and I encourage you 
to do likewise. Even if you aren't developing reusable components, thinking in these terms 
tends to improve the quality of the software you write. Furthermore, it's not uncommon to 
write a reusable component without knowing it: You write something useful, share it with 
your buddy across the hall, and before long you have half a dozen users. At this point, you no 
longer have the flexibility to change the API at will and are thankful for all the effort that you 
put into designing the API when you first wrote the software. 

My focus on API design may seem a bit unnatural to devotees of the new lightweight 
software development methodologies, such as Extreme Programming [Beck99]. These 
methodologies emphasize writing the simplest program that could possibly work. If you're 
using one of these methodologies, you'll find that a focus on API design serves you well in 
the refactoring process. The fundamental goals of refactoring are the improvement of system 
structure and the avoidance of code duplication. These goals are impossible to achieve in 
the absence of well-designed APIs for the components of the system. 

No language is perfect, but some are excellent. I have found the Java programming language 
and its libraries to be immensely conducive to quality and productivity, and a joy to work 
with. I hope this book captures my enthusiasm and helps make your use of the language more 
effective and enjoyable. 

Joshua Bloch 
Cupertino, California 
April 2001 
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Chapter 1. Introduction 
This book is designed to help you make the most effective use of the Java™ programming 
language and its fundamental libraries, java.lang, java.util, and, to a lesser extent, 
java.io. The book discusses other libraries from time to time, but it does not cover graphical 
user interface programming or enterprise APIs. 

This book consists of fifty-seven items, each of which conveys one rule. The rules capture 
practices generally held to be beneficial by the best and most experienced programmers. 
The items are loosely grouped into nine chapters, each concerning one broad aspect of 
software design. The book is not intended to be read from cover to cover: Each item stands on 
its own, more or less. The items are heavily cross-referenced so you can easily plot your own 
course through the book. 

Most items are illustrated with program examples. A key feature of this book is that it 
contains code examples illustrating many design patterns and idioms. Some are old, like 
Singleton (Item 2), and others are new, like Finalizer Guardian (Item 6) and Defensive 
readResolve (Item 57). A separate index is provided for easy access to these patterns and 
idioms (page 239). Where appropriate, they are cross-referenced to the standard reference 
work in this area [Gamma95]. 

Many items contain one or more program examples illustrating some practice to be avoided. 
Such examples, sometimes known as antipatterns, are clearly labeled with a comment such as 
“// Never do this!” In each case, the item explains why the example is bad and suggests an 
alternative approach. 

This book is not for beginners: it assumes that you are already comfortable with the Java 
programming language. If you are not, consider one of the many fine introductory texts 
[Arnold00, Campione00]. While the book is designed to be accessible to anyone with 
a working knowledge of the language, it should provide food for thought even for advanced 
programmers. 

Most of the rules in this book derive from a few fundamental principles. Clarity and 
simplicity are of paramount importance. The user of a module should never be surprised by its 
behavior. Modules should be as small as possible but no smaller. (As used in this book, 
the term module refers to any reusable software component, from an individual method to 
a complex system consisting of multiple packages.) Code should be reused rather than copied. 
The dependencies between modules should be kept to a minimum. Errors should be detected 
as soon as possible after they are made, ideally at compile time. 

While the rules in this book do not apply 100 percent of the time, they do characterize best 
programming practices in the great majority of cases. You should not slavishly follow these 
rules, but you should violate them only occasionally and with good reason. Learning the art of 
programming, like most other disciplines, consists of first learning the rules and then learning 
when to violate them. 

For the most part, this book is not about performance. It is about writing programs that are 
clear, correct, usable, robust, flexible, and maintainable. If you can do that, it's usually 
a relatively simple matter to get the performance you need (Item 37). Some items do discuss 
performance concerns, and a few of these items provide performance numbers. These 
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numbers, which are introduced with the phrase “On my machine,” should be regarded as 
approximate at best. 

For what it's worth, my machine is an aging homebuilt 400 MHz Pentium® II with 128 
megabytes of RAM, running Sun's 1.3 release of the Java 2 Standard Edition Software 
Development Kit (SDK) atop Microsoft Windows NT® 4.0. This SDK includes Sun's Java 
HotSpot™ Client VM, a state-of-the-art JVM implementation designed for client use. 

When discussing features of the Java programming language and its libraries, it is sometimes 
necessary to refer to specific releases. For brevity, this book uses “engineering version 
numbers” in preference to official release names. Table 1.1 shows the correspondence 
between release names and engineering version numbers. 

Table 1.1. Java Platform Versions 
Official Release Name  Engineering Version Number  
JDK 1.1.x / JRE 1.1.x 1.1 
Java 2 Platform, Standard Edition, v 1.2 1.2 
Java 2 Platform, Standard Edition, v 1.3 1.3 
Java 2 Platform, Standard Edition, v 1.4 1.4 

While features introduced in the 1.4 release are discussed in some items, program examples, 
with very few exceptions, refrain from using these features. The examples have been tested on 
releases 1.3. Most, if not all, of them should run without modification on release 1.2. 

The examples are reasonably complete, but they favor readability over completeness. They 
freely use classes from the packages java.util and java.io. In order to compile 
the examples, you may have to add one or both of these import statements: 

 
import java.util.*; 
import java.io.*; 

Other boilerplate is similarly omitted. The book's Web site, 
http://java.sun.com/docs/books/effective, contains an expanded version of each example, 
which you can compile and run. 

For the most part, this book uses technical terms as they are defined in The Java Language 
Specification, Second Edition [JLS]. A few terms deserve special mention. The language 
supports four kinds of types: interfaces, classes, arrays, and primitives. The first three are 
known as reference types. Class instances and arrays are objects; primitive values are not. 
A class's members consist of its fields, methods, member classes, and member interfaces. 
A method's signature consists of its name and the types of its formal parameters; the signature 
does not include the method's return type. 

This book uses a few terms differently from the The Java Language Specification. Unlike 
The Java Language Specification, this book uses inheritance as a synonym for subclassing. 
Instead of using the term inheritance for interfaces, this book simply states that a class 
implements an interface or that one interface extends another. To describe the access level that 
applies when none is specified, this book uses the descriptive term package-private instead of 
the technically correct term default access [JLS, 6.6.1]. 
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This book uses a few technical terms that are not defined in The Java Language Specification. 
The term exported API, or simply API, refers to the classes, interfaces, constructors, members, 
and serialized forms by which a programmer accesses a class, interface, or package. (The term 
API, which is short for application programming interface, is used in preference to the 
otherwise preferable term interface to avoid confusion with the language construct of that 
name.) A programmer who writes a program that uses an API is referred to as a user of the 
API. A class whose implementation uses an API is a client of the API. 

Classes, interfaces, constructors, members, and serialized forms are collectively known as API 
elements. An exported API consists of the API elements that are accessible outside of 
the package that defines the API. These are the API elements that any client can use and 
the author of the API commits to support. Not coincidentally, they are also the elements for 
which the Javadoc utility generates documentation in its default mode of operation. Loosely 
speaking, the exported API of a package consists of the public and protected members and 
constructors of every public class or interface in the package. 
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Chapter 2. Creating and Destroying Objects 
This chapter concerns creating and destroying objects: when and how to create objects, when 
and how to avoid creating them, how to ensure that objects are destroyed in a timely manner, 
and how to manage any cleanup actions that must precede object destruction. 

Item 1: Consider providing static factory methods instead of 
constructors 

The normal way for a class to allow a client to obtain an instance is to provide a public 
constructor. There is another, less widely known technique that should also be a part of every 
programmer's toolkit. A class can provide a public static factory method, which is simply 
a static method that returns an instance of the class. Here's a simple example from the class 
Boolean (the wrapper class for the primitive type boolean). This static factory method, which 
was added in the 1.4 release, translates a boolean primitive value into a Boolean object 
reference: 

 
public static Boolean valueOf(boolean b) { 
    return (b ? Boolean.TRUE : Boolean.FALSE); 
} 

A class can provide its clients with static factory methods instead of, or in addition to, 
constructors. Providing a static factory method instead of a public constructor has both 
advantages and disadvantages. 

One advantage of static factory methods is that, unlike constructors, they have names.  
If the parameters to a constructor do not, in and of themselves, describe the object being 
returned, a static factory with a well-chosen name can make a class easier to use and the 
resulting client code easier to read. For example, the constructor BigInteger(int, int, 
Random), which returns a BigInteger that is probably prime, would have been better 
expressed as a static factory method named BigInteger.probablePrime. (This static factory 
method was eventually added in the 1.4 release.) 

A class can have only a single constructor with a given signature. Programmers have been 
known to get around this restriction by providing two constructors whose parameter lists 
differ only in the order of their parameter types. This is a bad idea. The user of such an API 
will never be able to remember which constructor is which and will end up calling the wrong 
one by mistake. People reading code that uses these constructors will not know what the code 
does without referring to the class documentation. 

Because static factory methods have names, they do not share with constructors the restriction 
that a class can have only one with a given signature. In cases where a class seems to require 
multiple constructors with the same signature, you should consider replacing one or more 
constructors with static factory methods whose carefully chosen names highlight their 
differences. 

A second advantage of static factory methods is that, unlike constructors, they are not 
required to create a new object each time they're invoked.  This allows immutable classes 
(Item 13) to use preconstructed instances or to cache instances as they're constructed and to 
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dispense these instances repeatedly so as to avoid creating unnecessary duplicate objects. 
The Boolean.valueOf(boolean) method illustrates this technique: It never creates an object. 
This technique can greatly improve performance if equivalent objects are requested 
frequently, especially if these objects are expensive to create. 

The ability of static factory methods to return the same object from repeated invocations can 
also be used to maintain strict control over what instances exist at any given time. There are 
two reasons to do this. First, it allows a class to guarantee that it is a singleton (Item 2). 
Second, it allows an immutable class to ensure that no two equal instances exist: 
a.equals(b) if and only if a==b. If a class makes this guarantee, then its clients can use 
the == operator instead of the equals(Object) method, which may result in a substantial 
performance improvement. The typesafe enum pattern, described in Item 21, implements this 
optimization, and the String.intern method implements it in a limited form. 

A third advantage of static factory methods is that, unlike constructors, they can return 
an object of any subtype of their return type.  This gives you great flexibility in choosing 
the class of the returned object. 

One application of this flexibility is that an API can return objects without making their 
classes public. Hiding implementation classes in this fashion can lead to a very compact API. 
This technique lends itself to interface-based frameworks, where interfaces provide natural 
return types for static factory methods. 

For example, the Collections Framework has twenty convenience implementations of its 
collection interfaces, providing unmodifiable collections, synchronized collections, and the 
like. The great majority of these implementations are exported via static factory methods in 
a single, noninstantiable class (java.util.Collections). The classes of the returned objects 
are all nonpublic. 

The Collections Framework API is much smaller than it would be if it had exported twenty 
separate public classes for the convenience implementations. It is not just the bulk of the API 
that is reduced, but the “conceptual weight.” The user knows that the returned object has 
precisely the API specified by the relevant interface, so there is no need to read additional 
class documentation. Furthermore, using such a static factory method mandates that the client 
refer to the returned object by its interface rather than by its implementation class, which is 
generally a good practice (Item 34). 

Not only can the class of an object returned by a public static factory method be nonpublic, 
but the class can vary from invocation to invocation depending on the values of the 
parameters to the static factory. Any class that is a subtype of the declared return type is 
permissible. The class of the returned object can also vary from release to release, for 
enhanced software maintainability. 

The class of the object returned by a static factory method need not even exist at the time the 
class containing the static factory method is written. Such flexible static factory methods form 
the basis of service provider frameworks like the Java Cryptography Extension (JCE). A 
service provider framework is a system wherein providers make multiple implementations of 
an API available to users of the framework. A mechanism is provided to register these 
implementations, making them available for use. Clients of the framework use the API 
without worrying about which implementation they are using. 
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In the JCE, the system administrator registers an implementation class by editing a well-
known Properties file, adding an entry that maps a string key to the corresponding class 
name. Clients use a static factory method that takes the key as a parameter. The static factory 
method looks up the Class object in a map initialized from the Properties file and 
instantiates the class using the Class.newInstance method. The following implementation 
sketch illustrates this technique: 

 
// Provider framework sketch 
public abstract class Foo { 
    // Maps String key to corresponding Class object 
    private static Map implementations = null; 
 
    // Initializes implementations map the first time it's called 
    private static synchronized void initMapIfNecessary() { 
        if (implementations == null) { 
            implementations = new HashMap(); 
 
            // Load implementation class names and keys from 
            // Properties file, translate names into Class 
            // objects using Class.forName and store mappings. 
            ... 
        } 
 
    } 
    
    public static Foo getInstance(String key) { 
        initMapIfNecessary(); 
        Class c = (Class) implementations.get(key); 
        if (c == null) 
            return new DefaultFoo(); 
 
        try { 
            return (Foo) c.newInstance(); 
        } catch (Exception e) { 
            return new DefaultFoo(); 
        } 
    } 
} 

The main disadvantage of static factory methods is that classes without public or 
protected constructors cannot be subclassed.  The same is true for nonpublic classes 
returned by public static factories. For example, it is impossible to subclass any of the 
convenience implementation classes in the Collections Framework. Arguably this can be a 
blessing in disguise, as it encourages programmers to use composition instead of inheritance 
(Item 14). 

A second disadvantage of static factory methods is that they are not readily 
distinguishable from other static methods.  They do not stand out in API documentation in 
the way that constructors do. Furthermore, static factory methods represent a deviation from 
the norm. Thus it can be difficult to figure out from the class documentation how to instantiate 
a class that provides static factory methods instead of constructors. This disadvantage can be 
reduced by adhering to standard naming conventions. These conventions are still evolving, 
but two names for static factory methods are becoming common: 
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• valueOf—  Returns an instance that has, loosely speaking, the same value as its 
parameters. Static factory methods with this name are effectively type-conversion 
operators. 

• getInstance—  Returns an instance that is described by its parameters but cannot be 
said to have the same value. In the case of singletons, it returns the sole instance. This 
name is common in provider frameworks. 

In summary, static factory methods and public constructors both have their uses, and it pays to 
understand their relative merits. Avoid the reflex to provide constructors without first 
considering static factories because static factories are often more appropriate. If you've 
weighed the two options and nothing pushes you strongly in either direction, it's probably best 
to provide a constructor simply because it's the norm. 

Item 2: Enforce the singleton property with a private constructor 

A singleton is simply a class that is instantiated exactly once [Gamma98, p. 127]. Singletons 
typically represent some system component that is intrinsically unique, such as a video 
display or file system. 

There are two approaches to implementing singletons. Both are based on keeping the 
constructor private and providing a public static member to allow clients access to the sole 
instance of the class. In one approach, the public static member is a final field: 

 
// Singleton with final field 
public class Elvis { 
    public static final Elvis INSTANCE = new Elvis(); 
 
    private Elvis() { 
        ... 
    } 
 
    ...  // Remainder omitted 
} 

The private constructor is called only once, to initialize the public static final field 
Elvis.INSTANCE. The lack of public or protected constructors guarantees a “monoelvistic” 
universe: Exactly one Elvis instance will exist once the Elvis class is initialized—no more, 
no less. Nothing that a client does can change this. 

In a second approach, a public static factory method is provided instead of the public static 
final field: 
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// Singleton with static factory 
public class Elvis { 
    private static final Elvis INSTANCE = new Elvis(); 
 
    private Elvis() { 
        ... 
    } 
 
    public static Elvis getInstance() { 
        return INSTANCE; 
    } 
 
    ...  // Remainder omitted 
} 

All calls to the static method, Elvis.getInstance, return the same object reference, and no 
other Elvis instance will ever be created. 

The main advantage of the first approach is that the declarations of the members comprising 
the class make it clear that the class is a singleton: the public static field is final, so the field 
will always contain the same object reference. There may also be a slight performance 
advantage to the first approach, but a good JVM implementation should be able to eliminate it 
by inlining the call to the static factory method in the second approach. 

The main advantage of the second approach is that it gives you the flexibility to change your 
mind about whether the class should be a singleton without changing the API. The static 
factory method for a singleton returns the sole instance of the class but could easily be 
modified to return, say, a unique instance for each thread that invokes the method. 

On balance, then, it makes sense to use the first approach if you're absolutely sure that the 
class will forever remain a singleton. Use the second approach if you want to reserve 
judgment in the matter. 

To make a singleton class serializable (Chapter 10), it is not sufficient merely to add 
implements Serializable to its declaration. To maintain the singleton guarantee, you must 
also provide a readResolve method (Item 57). Otherwise, each deserialization of a serialized 
instance will result in the creation of a new instance, leading, in the case of our example, to 
spurious Elvis sightings. To prevent this, add the following readResolve method to the 
Elvis class: 

 
// readResolve method to preserve singleton property 
private Object readResolve() throws ObjectStreamException { 
    /* 
     * Return the one true Elvis and let the garbage collector 
     * take care of the Elvis impersonator. 
     */ 
    return INSTANCE; 
} 

A unifying theme underlies this Item and Item 21, which describes the typesafe enum pattern. 
In both cases, private constructors are used in conjunction with public static members to 
ensure that no new instances of the relevant class are created after it is initialized. In the case 
of this item, only a single instance of the class is created; in Item 21, one instance is created 
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for each member of the enumerated type. In the next item (Item 3), this approach is taken one 
step further: the absence of a public constructor is used to ensure that no instances of a class 
are ever created. 

Item 3: Enforce noninstantiability with a private constructor 

Occasionally you'll want to write a class that is just a grouping of static methods and static 
fields. Such classes have acquired a bad reputation because some people abuse them to write 
procedural programs in object-oriented languages, but they do have valid uses. They can be 
used to group related methods on primitive values or arrays, in the manner of 
java.lang.Math or java.util.Arrays, or to group static methods on objects that 
implement a particular interface, in the manner of java.util.Collections. They can also 
be used to group methods on a final class, in lieu of extending the class. 

Such utility classes were not designed to be instantiated: An instance would be nonsensical. In 
the absence of explicit constructors, however, the compiler provides a public, parameterless 
default constructor. To a user, this constructor is indistinguishable from any other. It is not 
uncommon to see unintentionally instantiable classes in published APIs. 

Attempting to enforce noninstantiability by making a class abstract does not work.  
The class can be subclassed and the subclass instantiated. Furthermore, it misleads the user 
into thinking the class was designed for inheritance (Item 15). There is, however, a simple 
idiom to ensure noninstantiability. A default constructor is generated only if a class contains 
no explicit constructors, so a class can be made noninstantiable by including a single 
explicit private constructor: 

 
// Noninstantiable utility class 
public class UtilityClass { 
 
    // Suppress default constructor for noninstantiability 
    private UtilityClass() { 
        // This constructor will never be invoked 
    } 
    ...  // Remainder omitted 
} 

Because the explicit constructor is private, it is inaccessible outside of the class. It is thus 
guaranteed that the class will never be instantiated, assuming the constructor is not invoked 
from within the class itself. This idiom is mildly counterintuitive, as the constructor is 
provided expressly so that it cannot be invoked. It is therefore wise to include a comment 
describing the purpose of the constructor. 

As a side effect, this idiom also prevents the class from being subclassed. All constructors 
must invoke an accessible superclass constructor, explicitly or implicitly, and a subclass 
would have no accessible constructor to invoke. 

Item 4: Avoid creating duplicate objects 

It is often appropriate to reuse a single object instead of creating a new functionally equivalent 
object each time it is needed. Reuse can be both faster and more stylish. An object can always 
be reused if it is immutable (Item 13). 
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As an extreme example of what not to do, consider this statement: 

 
String s = new String("silly");  // DON'T DO THIS! 

The statement creates a new String instance each time it is executed, and none of those 
object creations is necessary. The argument to the String constructor ("silly") is itself a 
String instance, functionally identical to all of the objects created by the constructor. If this 
usage occurs in a loop or in a frequently invoked method, millions of String instances can be 
created needlessly. 

The improved version is simply the following: 

 
 String s = "No longer silly"; 

This version uses a single String instance, rather than creating a new one each time it is 
executed. Furthermore, it is guaranteed that the object will be reused by any other code 
running in the same virtual machine that happens to contain the same string literal [JLS, 
3.10.5]. 

You can often avoid creating duplicate objects by using static factory methods (Item 1) in 
preference to constructors on immutable classes that provide both. For example, the static 
factory method Boolean.valueOf(String) is almost always preferable to the constructor 
Boolean(String). The constructor creates a new object each time it's called while the static 
factory method is never required to do so. 

In addition to reusing immutable objects, you can also reuse mutable objects that you know 
will not be modified. Here is a slightly more subtle and much more common example of what 
not to do, involving mutable objects that are never modified once their values have been 
computed: 

 
public class Person { 
    private final Date birthDate; 
    // Other fields omitted 
 
    public Person(Date birthDate) { 
        this.birthDate = birthDate; 
    } 
    // DON'T DO THIS! 
    public boolean isBabyBoomer() { 
        Calendar gmtCal = 
            Calendar.getInstance(TimeZone.getTimeZone("GMT")); 
        gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0); 
        Date boomStart = gmtCal.getTime(); 
        gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0); 
        Date boomEnd = gmtCal.getTime(); 
        return birthDate.compareTo(boomStart) >= 0 && 
               birthDate.compareTo(boomEnd)   <  0; 
    } 
} 
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The isBabyBoomer method unnecessarily creates a new Calendar, TimeZone, and two Date 
instances each time it is invoked. The version that follows avoids this inefficiency with 
a static initializer: 

 
class Person { 
    private final Date birthDate; 
 
    public Person(Date birthDate) { 
        this.birthDate = birthDate; 
    } 
 
 
    /** 
     * The starting and ending dates of the baby boom. 
     */ 
    private static final Date BOOM_START; 
    private static final Date BOOM_END; 
 
    static { 
        Calendar gmtCal = 
            Calendar.getInstance(TimeZone.getTimeZone("GMT")); 
        gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0); 
        BOOM_START = gmtCal.getTime(); 
        gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0); 
        BOOM_END = gmtCal.getTime(); 
    } 
 
    public boolean isBabyBoomer() { 
        return birthDate.compareTo(BOOM_START) >= 0 && 
               birthDate.compareTo(BOOM_END)   <  0; 
    } 
} 

The improved version of the Person class creates Calendar, TimeZone, and Date instances 
only once, when it is initialized, instead of creating them every time isBabyBoomer is 
invoked. This results in significant performance gains if the method is invoked frequently. On 
my machine, the original version takes 36,000 ms for one million invocations, while the 
improved version takes 370 ms, which is one hundred times faster. Not only is performance 
improved, but so is clarity. Changing boomStart and boomEnd from local variables to final 
static fields makes it clear that these dates are treated as constants, making the code more 
understandable. In the interest of full disclosure, the savings from this sort of optimization 
will not always be this dramatic, as Calendar instances are particularly expensive to create. 

If the isBabyBoomer method is never invoked, the improved version of the Person class will 
initialize the BOOM_START and BOOM_END fields unnecessarily. It would be possible to 
eliminate the unnecessary initializations by lazily initializing these fields (Item 48) the first 
time the isBabyBoomer method is invoked, but it is not recommended. As is often the case 
with lazy initialization, it would complicate the implementation and would be unlikely to 
result in a noticeable performance improvement (Item 37). 

In all of the previous examples in this item, it was obvious that the objects in question could 
be reused because they were immutable. There are other situations where it is less obvious. 
Consider the case of adapters [Gamma98, p. 139], also known as views. An adapter is one 
object that delegates to a backing object, providing an alternative interface to the backing 
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object. Because an adapter has no state beyond that of its backing object, there's no need to 
create more than one instance of a given adapter to a given object. 

For example, the keySet method of the Map interface returns a Set view of the Map object, 
consisting of all the keys in the map. Naively, it would seem that every call to keySet would 
have to create a new Set instance, but every call to keySet on a given Map object may return 
the same Set instance. Although the returned Set instance is typically mutable, all of the 
returned objects are functionally identical: When one returned object changes, so do all the 
others because they're all backed by the same Map instance. 

This item should not be misconstrued to imply that object creation is expensive and should be 
avoided. On the contrary, the creation and reclamation of small objects whose constructors do 
little explicit work is cheap, especially on modern JVM implementations. Creating additional 
objects to enhance the clarity, simplicity, or power of a program is generally a good thing. 

Conversely, avoiding object creation by maintaining your own object pool is a bad idea unless 
the objects in the pool are extremely heavyweight. A prototypical example of an object that 
does justify an object pool is a database connection. The cost of establishing the connection is 
sufficiently high that it makes sense to reuse these objects. Generally speaking, however, 
maintaining your own object pools clutters up your code, increases memory footprint, and 
harms performance. Modern JVM implementations have highly optimized garbage collectors 
that easily outperform such object pools on lightweight objects. 

The counterpoint to this item is Item 24 on defensive copying. The present item says: “Don't 
create a new object when you should reuse an existing one,” while Item 32 says: “Don't reuse 
an existing object when you should create a new one.” Note that the penalty for reusing an 
object when defensive copying is called for is far greater than the penalty for needlessly 
creating a duplicate object. Failing to make defensive copies where required can lead to 
insidious bugs and security holes; creating objects unnecessarily merely affects style and 
performance. 

Item 5: Eliminate obsolete object references 

When you switch from a language with manual memory management, such as C or C++, to a 
garbage-collected language, your job as a programmer is made much easier by the fact that 
your objects are automatically reclaimed when you're through with them. It seems almost like 
magic when you first experience it. It can easily lead to the impression that you don't have to 
think about memory management, but this isn't quite true. 

Consider the following simple stack implementation: 

 
// Can you spot the "memory leak"? 
public class Stack { 
    private Object[] elements; 
    private int size = 0; 
 
    public Stack(int initialCapacity) { 
        this.elements = new Object[initialCapacity]; 
    } 
 
 



Effective Java: Programming Language Guide 

17 

    public void push(Object e) { 
        ensureCapacity(); 
        elements[size++] = e; 
    } 
 
    public Object pop() { 
        if (size == 0) 
            throw new EmptyStackException(); 
        return elements[--size]; 
    } 
 
    /** 
     * Ensure space for at least one more element, roughly 
     * doubling the capacity each time the array needs to grow. 
     */ 
    private void ensureCapacity() { 
        if (elements.length == size) { 
            Object[] oldElements = elements; 
            elements = new Object[2 * elements.length + 1]; 
            System.arraycopy(oldElements, 0, elements, 0, size); 
        } 
    } 
} 

There's nothing obviously wrong with this program. You could test it exhaustively, and it 
would pass every test with flying colors, but there's a problem lurking. Loosely speaking, the 
program has a “memory leak,” which can silently manifest itself as reduced performance due 
to increased garbage collector activity or increased memory footprint. In extreme cases, such 
memory leaks can cause disk paging and even program failure with an OutOfMemoryError, 
but such failures are relatively rare. 

So where is the memory leak? If a stack grows and then shrinks, the objects that were popped 
off the stack will not be garbage collected, even if the program using the stack has no more 
references to them. This is because the stack maintains obsolete references to these objects. 
An obsolete reference is simply a reference that will never be dereferenced again. In this case, 
any references outside of the “active portion” of the element array are obsolete. The active 
portion consists of the elements whose index is less than size. 

Memory leaks in garbage collected languages (more properly known as unintentional object 
retentions) are insidious. If an object reference is unintentionally retained, not only is that 
object excluded from garbage collection, but so too are any objects referenced by that object, 
and so on. Even if only a few object references are unintentionally retained, many, many 
objects may be prevented from being garbage collected, with potentially large effects on 
performance. 

The fix for this sort of problem is simple: Merely null out references once they become 
obsolete. In the case of our Stack class, the reference to an item becomes obsolete as soon as 
it's popped off the stack. The corrected version of the pop method looks like this: 
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public Object pop() { 
    if (size==0) 
        throw new EmptyStackException(); 
    Object result = elements[--size]; 
    elements[size] = null; // Eliminate obsolete reference 
    return result; 
} 

An added benefit of nulling out obsolete references is that, if they are subsequently 
dereferenced by mistake, the program will immediately fail with a NullPointerException, 
rather than quietly doing the wrong thing. It is always beneficial to detect programming errors 
as quickly as possible. 

When programmers are first stung by a problem like this, they tend to overcompensate by 
nulling out every object reference as soon as the program is finished with it. This is neither 
necessary nor desirable as it clutters up the program unnecessarily and could conceivably 
reduce performance. Nulling out object references should be the exception rather than the 
norm. The best way to eliminate an obsolete reference is to reuse the variable in which it was 
contained or to let it fall out of scope. This occurs naturally if you define each variable in the 
narrowest possible scope (Item 29). It should be noted that on present day JVM 
implementations, it is not sufficient merely to exit the block in which a variable is defined; 
one must exit the containing method in order for the reference to vanish. 

So when should you null out a reference? What aspect of the Stack class makes it susceptible 
to memory leaks? Simply put, the Stack class manages its own memory. The storage pool 
consists of the elements of the items array (the object reference cells, not the objects 
themselves). The elements in the active portion of the array (as defined earlier) are allocated, 
and those in the remainder of the array are free. The garbage collector has no way of knowing 
this; to the garbage collector, all of the object references in the items array are equally valid. 
Only the programmer knows that the inactive portion of the array is unimportant. The 
programmer effectively communicates this fact to the garbage collector by manually nulling 
out array elements as soon as they become part of the inactive portion. 

Generally speaking, whenever a class manages its own memory, the programmer should be 
alert for memory leaks. Whenever an element is freed, any object references contained in the 
element should be nulled out. 

Another common source of memory leaks is caches. Once you put an object reference into a 
cache, it's easy to forget that it's there and leave it in the cache long after it becomes 
irrelevant. There are two possible solutions to this problem. If you're lucky enough to be 
implementing a cache wherein an entry is relevant exactly so long as there are references to 
its key outside of the cache, represent the cache as a WeakHashMap; entries will be removed 
automatically after they become obsolete. More commonly, the period during which a cache 
entry is relevant is not well defined, with entries becoming less valuable over time. Under 
these circumstances, the cache should occasionally be cleansed of entries that have fallen into 
disuse. This cleaning can be done by a background thread (perhaps via the java.util.Timer 
API) or as a side effect of adding new entries to the cache. The java.util.LinkedHashMap 
class, added in release 1.4, facilitates the latter approach with its removeEldestEntry 
method. 
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Because memory leaks typically do not manifest themselves as obvious failures, they may 
remain present in a system for years. They are typically discovered only as a result of careful 
code inspection or with the aid of a debugging tool known as a heap profiler. Therefore it is 
very desirable to learn to anticipate problems like this before they occur and prevent them 
from happening 

Item 6: Avoid finalizers 

Finalizers are unpredictable, often dangerous, and generally unnecessary. Their use can cause 
erratic behavior, poor performance, and portability problems. Finalizers have a few valid uses, 
which we'll cover later in this item, but as a rule of thumb, finalizers should be avoided. 

C++ programmers are cautioned not to think of finalizers as the analog of C++ destructors. In 
C++, destructors are the normal way to reclaim the resources associated with an object, a 
necessary counterpart to constructors. In the Java programming language, the garbage 
collector reclaims the storage associated with an object when it becomes unreachable, 
requiring no special effort on the part of the programmer. C++ destructors are also used to 
reclaim other nonmemory resources. In the Java programming language, the try-finally 
block is generally used for this purpose. 

There is no guarantee that finalizers will be executed promptly [JLS, 12.6]. It can take 
arbitrarily long between the time that an object becomes unreachable and the time that its 
finalizer is executed. This means that nothing time-critical should ever be done by a 
finalizer. For example, it is a grave error to depend on a finalizer to close open files because 
open file descriptors are a limited resource. If many files are left open because the JVM is 
tardy in executing finalizers, a program may fail because it can no longer open files. 

The promptness with which finalizers are executed is primarily a function of the garbage 
collection algorithm, which varies widely from JVM implementation to JVM implementation. 
The behavior of a program that depends on the promptness of finalizer execution may 
likewise vary. It is entirely possible that such a program will run perfectly on the JVM on 
which you test it and then fail miserably on the JVM favored by your most important 
customer. 

Tardy finalization is not just a theoretical problem. Providing a finalizer for a class can, under 
rare conditions, arbitrarily delay reclamation of its instances. A colleague recently debugged a 
long-running GUI application that was mysteriously dying with an OutOfMemoryError. 
Analysis revealed that at the time of its death, the application had thousands of graphics 
objects on its finalizer queue just waiting to be finalized and reclaimed. Unfortunately, the 
finalizer thread was running at a lower priority than another thread in the application, so 
objects weren't getting finalized at the rate they became eligible for finalization. The JLS 
makes no guarantees as to which thread will execute finalizers, so there is no portable way to 
prevent this sort of problem other than to refrain from using finalizers. 

Not only does the JLS provide no guarantee that finalizers will get executed promptly, it 
provides no guarantee that they'll get executed at all. It is entirely possible, even likely, that a 
program terminates without executing finalizers on some objects that are no longer reachable. 
As a consequence, you should never depend on a finalizer to update critical persistent 
state. For example, depending on a finalizer to release a persistent lock on a shared resource 
such as a database is a good way to bring your entire distributed system to a grinding halt. 
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Don't be seduced by the methods System.gc and System.runFinalization. They may 
increase the odds of finalizers getting executed, but they don't guarantee it. The only methods 
that claim to guarantee finalization are System.runFinalizersOnExit and its evil twin, 
Runtime.runFinalizersOnExit. These methods are fatally flawed and have been 
deprecated. 

In case you are not yet convinced that finalizers should be avoided, here's another tidbit worth 
considering: If an uncaught exception is thrown during finalization, the exception is ignored, 
and finalization of that object terminates [JLS, 12.6]. Uncaught exceptions can leave objects 
in a corrupt state. If another thread attempts to use such a corrupted object, arbitrary 
nondeterministic behavior may result. Normally, an uncaught exception will terminate the 
thread and print a stack trace, but not if it occurs in a finalizer—it won't even print a warning. 

So what should you do instead of writing a finalizer for a class whose objects encapsulate 
resources that require termination, such as files or threads? Just provide an explicit 
termination method, and require clients of the class to invoke this method on each instance 
when it is no longer needed. One detail worth mentioning is that the instance must keep track 
of whether it has been terminated: The explicit termination method must record in a private 
field that the object is no longer valid, and other methods must check this field and throw an 
IllegalStateException if they are called after the object has been terminated. 

A typical example of an explicit termination method is the close method on InputStream 
and OutputStream. Another example is the cancel method on java.util.Timer, which 
performs the necessary state change to cause the thread associated with a Timer instance to 
terminate itself gently. Examples from java.awt include Graphics.dispose and 
Window.dispose. These methods are often overlooked, with predictably dire performance 
consequences. A related method is Image.flush, which deallocates all the resources 
associated with an Image instance but leaves it in a state where it can still be used, 
reallocating the resources if necessary. 

Explicit termination methods are often used in combination with the try-finally 
construct to ensure prompt termination.  Invoking the explicit termination method inside 
the finally clause ensures that it will get executed even if an exception is thrown while the 
object is being used: 

 
// try-finally block guarantees execution of termination method 
Foo foo = new Foo(...); 
try { 
    // Do what must be done with foo 
    ... 
} finally { 
    foo.terminate();  // Explicit termination method 
} 

So what, if anything, are finalizers good for? There are two legitimate uses. One is to act as a 
“safety net” in case the owner of an object forgets to call the explicit termination method that 
you provided per the advice in the previous paragraph. While there's no guarantee that the 
finalizer will get invoked promptly, it's better to free the critical resource late than never, in 
those (hopefully rare) cases when the client fails to hold up its end of the bargain by calling 
the explicit termination method. The three classes mentioned as examples of the explicit 
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termination method pattern (InputStream, OutputStream, and Timer) also have finalizers 
that serve as safety nets in case their termination methods aren't called. 

A second legitimate use of finalizers concerns objects with native peers. A native peer is a 
native object to which a normal object delegates via native methods. Because a native peer is 
not a normal object, the garbage collector doesn't know about it and can't reclaim it when its 
normal peer is reclaimed. A finalizer is an appropriate vehicle for performing this task, 
assuming the native peer holds no critical resources. If the native peer holds resources that 
must be terminated promptly, the class should have an explicit termination method, as 
described above. The termination method should do whatever is required to free the critical 
resource. The termination method can be a native method, or it can invoke one. 

It is important to note that “finalizer chaining” is not performed automatically. If a class 
(other than Object) has a finalizer and a subclass overrides it, the subclass finalizer must 
invoke the superclass finalizer manually. You should finalize the subclass in a try block and 
invoke the superclass finalizer in the corresponding finally block. This ensures that the 
superclass finalizer gets executed even if the subclass finalization throws an exception and 
vice versa: 

 
// Manual finalizer chaining 
protected void finalize() throws Throwable { 
    try { 
        // Finalize subclass state 
        ... 
    } finally { 
        super.finalize(); 
    } 
} 

If a subclass implementor overrides a superclass finalizer but forgets to invoke the superclass 
finalizer manually (or chooses not to out of spite), the superclass finalizer will never be 
invoked. It is possible to defend against such a careless or malicious subclass at the cost of 
creating an additional object for every object to be finalized. Instead of putting the finalizer on 
the class requiring finalization, put the finalizer on an anonymous class (Item 18) whose sole 
purpose is to finalize its enclosing instance. A single instance of the anonymous class, called a 
finalizer guardian, is created for each instance of the enclosing class. The enclosing instance 
stores the sole reference to its finalizer guardian in a private instance field so the finalizer 
guardian becomes eligible for finalization immediately prior to the enclosing instance. When 
the guardian is finalized, it performs the finalization activity desired for the enclosing 
instance, just as if its finalizer were a method on the enclosing class: 

 
// Finalizer Guardian idiom 
public class Foo { 
   // Sole purpose of this object is to finalize outer Foo object 
   private final Object finalizerGuardian = new Object() { 
      protected void finalize() throws Throwable { 
         // Finalize outer Foo object 
         ... 
      } 
   }; 
   ...  // Remainder omitted 
} 
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Note that the public class, Foo, has no finalizer (other than the trivial one that it inherits from 
Object), so it doesn't matter whether a subclass finalizer calls super.finalize or not. This 
technique should be considered for every nonfinal public class that has a finalizer. 

In summary, don't use finalizers except as a safety net or to terminate noncritical native 
resources. In those rare instances where you do use a finalizer, remember to invoke 
super.finalize. Last , if you need to associate a finalizer with a public, nonfinal class, 
consider using a finalizer guardian to ensure that the finalizer is executed, even if a subclass 
finalizer fails to invoke super.finalize. 
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Chapter 3. Methods Common to All Objects 
Although Object is a concrete class, it is designed primarily for extension. All of its nonfinal 
methods (equals, hashCode, toString, clone, and finalize) have explicit general 
contracts because they are designed to be overridden. It is the responsibility of any class 
overriding these methods to obey their general contracts; failure to do so will prevent other 
classes that depend on these contracts from functioning properly in conjunction with the class. 

This chapter tells you when and how to override the nonfinal Object methods. The finalize 
method is omitted from this chapter because it was discussed in Item 6. While not an Object 
method, Comparable.compareTo is discussed in this chapter because it has a similar 
character. 

Item 7: Obey the general contract when overriding equals 

Overriding the equals method seems simple, but there are many ways to get it wrong, and 
the consequences can be dire. The easiest way to avoid problems is not to override the equals 
method, in which case each instance is equal only to itself. This is the right thing to do if any 
of the following conditions apply: 

• Each instance of the class is inherently unique.  This is true for classes that 
represent active entities rather than values, such as Thread. The equals 
implementation provided by Object has exactly the right behavior for these classes. 

• You don't care whether the class provides a “logical equality” test.  For example, 
java.util.Random could have overridden equals to check whether two Random 
instances would produce the same sequence of random numbers going forward, but 
the designers didn't think that clients would need or want this functionality. Under 
these circumstances, the equals implementation inherited from Object is adequate. 

• A superclass has already overridden equals, and the behavior inherited from 
the superclass is appropriate for this class.  For example, most Set implementations 
inherit their equals implementation from AbstractSet, List implementations from 
AbstractList, and Map implementations from AbstractMap. 

• The class is private or package-private, and you are certain that its equals 
method will never be invoked.  Arguably, the equals method should be overridden 
under these circumstances, in case it is accidentally invoked someday: 

 
   public boolean equals(Object o) { 
       throw new UnsupportedOperationException(); 
   } 

So when is it appropriate to override Object.equals? When a class has a notion of logical 
equality that differs from mere object identity, and a superclass has not already overridden 
equals to implement the desired behavior. This is generally the case for value classes, such 
as Integer or Date. A programmer who compares references to value objects using the 
equals method expects to find out whether they are logically equivalent, not whether they 
refer to the same object. Not only is overriding the equals method necessary to satisfy 
programmer expectations, it enables instances of the class to serve as map keys or set 
elements with predictable, desirable behavior. 
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One kind of value class that does not require the equals method to be overridden is 
the typesafe enum (Item 21). Because typesafe enum classes guarantee that at most one object 
exists with each value, Object's equals method is equivalent to a logical equals method for 
such classes. 

When you override the equals method, you must adhere to its general contract. Here is 
the contract, copied from the specification for java.lang.Object: 

The equals method implements an equivalence relation: 

• It is reflexive: For any reference value x, x.equals(x) must return true. 
• It is symmetric: For any reference values x and y, x.equals(y) must return true if 

and only if y.equals(x) returns true. 
• It is transitive: For any reference values x, y, and z, if x.equals(y) returns true and 

y.equals(z) returns true, then x.equals(z) must return true. 
• It is consistent: For any reference values x and y, multiple invocations of 

x.equals(y) consistently return true or consistently return false, provided no 
information used in equals comparisons on the object is modified. 

• For any non-null reference value x, x.equals(null) must return false. 

Unless you are mathematically inclined, this might look a bit scary, but do not ignore it! If 
you violate it, you may well find that your program behaves erratically or crashes, and it can 
be very difficult to pin down the source of the failure. To paraphrase John Donne, no class is 
an island. Instances of one class are frequently passed to another. Many classes, including all 
collections classes, depend on the objects passed to them obeying the equals contract. 

Now that you are aware of the evils of violating the equals contract, let's go over the contract 
in detail. The good news is that, appearances notwithstanding, the contract really isn't very 
complicated. Once you understand it, it's not hard to adhere to it. Let's examine the five 
requirements in turn: 

Reflexivity—  The first requirement says merely that an object must be equal to itself. It is 
hard to imagine violating this requirement unintentionally. If you were to violate it and then 
add an instance of your class to a collection, the collection's contains method would almost 
certainly say that the collection did not contain the instance that you just added. 

Symmetry—  The second requirement says that any two objects must agree on whether they 
are equal. Unlike the first requirement, it's not hard to imagine violating this one 
unintentionally. For example, consider the following class: 

/** 
 * Case-insensitive string. Case of the original string is 
 * preserved by toString, but ignored in comparisons. 
 */ 
public final class CaseInsensitiveString { 
    private String s; 
 
    public CaseInsensitiveString(String s) { 
        if (s == null) 
            throw new NullPointerException(); 
        this.s = s; 
    } 
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    //Broken - violates symmetry! 
    public boolean equals(Object o) { 
        if (o instanceof CaseInsensitiveString) 
            return s.equalsIgnoreCase( 
                ((CaseInsensitiveString)o).s); 
        if (o instanceof String)  // One-way interoperability! 
            return s.equalsIgnoreCase((String)o); 
        return false; 
    } 
    ...  // Remainder omitted 
} 

The well-intentioned equals method in this class naively attempts to interoperate with 
ordinary strings. Let's suppose that we have one case-sensitive string and one ordinary one: 

 
CaseInsensitiveString cis = new CaseInsensitiveString("Polish"); 
String s = "polish"; 

As expected, cis.equals(s) returns true. The problem is that while the equals method in 
CaseInsensitiveString knows about ordinary strings, the equals method in String is 
oblivious to case-insensitive strings. Therefore s.equals(cis) returns false, a clear 
violation of symmetry. Suppose you put a case-insensitive string into a collection: 

 
List list = new ArrayList(); 
list.add(cis); 

What does list.contains(s) return at this point? Who knows? In Sun's current 
implementation, it happens to return false, but that's just an implementation artifact. In 
another implementation, it could just as easily return true or throw a run-time exception. 
Once you've violated the equals contract, you simply don't know how other objects will 
behave when confronted with your object. 

To eliminate the problem, merely remove the ill-conceived attempt to interoperate with 
String from the equals method. Once you do this, you can refactor the method to give it 
a single return: 

 
public boolean equals(Object o) { 
    return o instanceof CaseInsensitiveString && 
        ((CaseInsensitiveString)o).s.equalsIgnoreCase(s); 
} 

Transitivity—  The third requirement of the equals contract says that if one object is equal 
to a second and the second object is equal to a third, then the first object must be equal to 
the third. Again, it's not hard to imagine violating this requirement unintentionally. Consider 
the case of a programmer who creates a subclass that adds a new aspect to its superclass. In 
other words, the subclass adds a piece of information that affects equals comparisons. Let's 
start with a simple immutable two-dimensional point class: 
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public class Point { 
    private final int x; 
    private final int y; 
    public Point(int x, int y) { 
        this.x = x; 
        this.y = y; 
    } 
 
    public boolean equals(Object o) { 
        if (!(o instanceof Point)) 
            return false; 
        Point p = (Point)o; 
        return p.x == x && p.y == y; 
    } 
 
    ... // Remainder omitted 
} 

Suppose you want to extend this class, adding the notion of color to a point: 

 
public class ColorPoint extends Point { 
    private Color color; 
 
    public ColorPoint(int x, int y, Color color) { 
        super(x, y); 
        this.color = color; 
    } 
 
    ... // Remainder omitted 
} 

How should the equals method look? If you leave it out entirely, the implementation is 
inherited from Point, and color information is ignored in equals comparisons. While this 
does not violate the equals contract, it is clearly unacceptable. Suppose you write an equals 
method that returns true only if its argument is another color point with the same position 
and color: 

 
//Broken - violates symmetry! 
public boolean equals(Object o) { 
    if (!(o instanceof ColorPoint)) 
       return false; 
    ColorPoint cp = (ColorPoint)o; 
    return super.equals(o) && cp.color == color; 
} 

The problem with this method is that you might get different results when comparing a point 
to a color point and vice versa. The former comparison ignores color, while the latter 
comparison always returns false because the type of the argument is incorrect. To make this 
concrete, let's create one point and one color point: 

 
Point p = new Point(1, 2); 
ColorPoint cp = new ColorPoint(1, 2, Color.RED); 
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Then p.equals(cp) returns true, while cp.equals(p) returns false. You might try to fix 
the problem by having ColorPoint.equals ignore color when doing “mixed comparisons”: 

 
//Broken - violates transitivity. 
public boolean equals(Object o) { 
    if (!(o instanceof Point)) 
        return false; 
 
    // If o is a normal Point, do a color-blind comparison 
    if (!(o instanceof ColorPoint)) 
        return o.equals(this); 
 
    // o is a ColorPoint; do a full comparison 
    ColorPoint cp = (ColorPoint)o; 
    return super.equals(o) && cp.color == color; 
} 

This approach does provide symmetry, but at the expense of transitivity: 

 
ColorPoint p1 = new ColorPoint(1, 2, Color.RED); 
Point p2 = new Point(1, 2); 
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE); 

At this point, p1.equals(p2) and p2.equals(p3) return true, while p1.equals(p3) 
returns false, a clear violation of transitivity. The first two comparisons are “color-blind,” 
while the third takes color into account. 

So what's the solution? It turns out that this is a fundamental problem of equivalence relations 
in object-oriented languages. There is simply no way to extend an instantiable class and 
add an aspect while preserving the equals contract. There is, however, a fine workaround. 
Follow the advice of Item 14, “Favor composition over inheritance.” Instead of having 
ColorPoint extend Point, give ColorPoint a private Point field and a public view method 
(Item 4) that returns the point at the same position as this color point: 

 
// Adds an aspect without violating the equals contract 
public class ColorPoint { 
   private Point point; 
   private Color color; 
 
   public ColorPoint(int x, int y, Color color) { 
      point = new Point(x, y); 
      this.color = color; 
   } 
 
   /** 
     * Returns the point-view of this color point. 
     */ 
   public Point asPoint() { 
      return point; 
   } 
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   public boolean equals(Object o) { 
      if (!(o instanceof ColorPoint)) 
         return false; 
      ColorPoint cp = (ColorPoint)o; 
       return cp.point.equals(point) && cp.color.equals(color); 
   } 
 
   ...  // Remainder omitted 
} 

There are some classes in the Java platform libraries that subclass an instantiable class and 
add an aspect. For example, java.sql.Timestamp subclasses java.util.Date adding 
a nanoseconds field. The equals implementation for Timestamp does violate symmetry and 
can cause erratic behavior if Timestamp and Date objects are used in the same collection or 
are otherwise intermixed. The Timestamp class has a disclaimer cautioning the programmer 
against mixing dates and timestamps. While you won't get into trouble as long as you don't 
mix them, there's nothing preventing you from doing so, and the resulting errors could be hard 
to debug. The TimeStamp class is an anomaly and should not be emulated. 

Note that you can add an aspect to a subclass of an abstract class without violating 
the equals contract. This is important for the sort of class hierarchies that you get by 
following the advice in Item 20, “Replace unions with class hierarchies.” For example, you 
could have an abstract Shape class with no aspects, a Circle subclass that adds a radius 
field, and a Rectangle subclass that adds length and width fields. Problems of the sort just 
shown will not occur as long as it is impossible to create an instance of the superclass. 

Consistency—  The fourth requirement of the equals contract says that if two objects are 
equal, they must remain equal for all time, unless one (or both) of them is modified. This isn't 
so much a true requirement as a reminder that mutable objects can be equal to different 
objects at different times while immutable objects can't. When you write a class, think hard 
about whether it should be immutable (Item 13). If you conclude that it should, make sure that 
your equals method enforces the restriction that equal objects remain equal and unequal 
objects remain unequal for all time. 

“Non-nullity”—  The final requirement, which in the absence of a name I have taken 
the liberty of calling “non-nullity,” says that all objects must be unequal to null. While it is 
hard to imagine accidentally returning true in response to the invocation o.equals(null), it 
isn't hard to imagine accidentally throwing a NullPointerException. The general contract 
does not allow this. Many classes have equals methods that guard against it with an explicit 
test for null: 

 
public boolean equals(Object o) { 
    if (o == null) 
        return false; 
    ... 
} 

This test is not necessary. To test its argument for equality, the equals method must first cast 
the argument to an appropriate type so its accessors may be invoked or its fields accessed. 
Before doing the cast, the method must use the instanceof operator to check that its 
argument is of the correct type: 
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public boolean equals(Object o) { 
    if (!(o instanceof MyType)) 
        return false; 
    ... 
} 

If this type check were missing and the equals method were passed an argument of 
the wrong type, the equals method would throw a ClassCastException, which violates 
the equals contract. But the instanceof operator is specified to return false if its first 
operand is null, regardless of what type appears in the second operand [JLS, 15.19.2]. 
Therefore the type check will return false if null is passed in, so you don't need a separate 
null check. Putting it all together, here's a recipe for a high-quality equals method: 

1. Use the == operator to check if the argument is a reference to this object.  If so, 
return true. This is just a performance optimization, but one that is worth doing if 
the comparison is potentially expensive. 

2. Use the instanceof operator to check if the argument is of the correct type.  If not, 
return false. Typically, the correct type is the class in which the method occurs. 
Occasionally, it is some interface implemented by this class. Use an interface if 
the class implements an interface that refines the equals contract to permit 
comparisons across classes that implement the interface. The collection interfaces Set, 
List, Map, and Map.Entry have this property. 

3. Cast the argument to the correct type.  Because this cast was preceded by 
an instanceof test, it is guaranteed to succeed. 

4. For each “significant” field in the class, check to see if that field of the argument 
matches the corresponding field of this object.  If all these tests succeed, return 
true; otherwise, return false. If the type in Step 2 is an interface, you must access 
the argument's significant fields via interface methods; if the type is a class, you may 
be able to access the fields directly, depending on their accessibility. For primitive 
fields whose type is not float or double, use the == operator for comparisons; for 
object reference fields, invoke the equals method recursively; for float fields, 
translate to int values using Float.floatToIntBits and compare the int values 
using the == operator; for double fields, translate to long values using 
Double.doubleToLongBits and compare the long values using the == operator. 
(The special treatment of float and double fields is made necessary by the existence 
of Float.NaN, -0.0f, and the analogous double constants; see the Float.equals 
documentation for details.) For array fields, apply these guidelines to each element. 
Some object reference fields may legitimately contain null. To avoid the possibility 
of a NullPointerException, use the following idiom to compare such fields: 

 
   (field == null ? o.field == null : field.equals(o.field)) 

This alternative may be faster if field and o.field are often identical object 
references: 

 
(field == o.field || (field != null && field.equals(o.field))) 
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For some classes, like CaseInsensitiveString shown earlier, the field comparisons 
are more complex than simple equality tests. It should be apparent from the 
specification for a class if this is the case. If so, you may want to store a canonical 
form in each object, so that the equals method can do cheap exact comparisons on 
these canonical forms rather than more costly inexact comparisons. This technique is 
most appropriate for immutable classes (Item 13), as the canonical form would have to 
be kept up to date if the object could change. 

The performance of the equals method may be affected by the order in which fields 
are compared. For best performance, you should first compare fields that are more 
likely to differ, less expensive to compare, or, ideally, both. You must not compare 
fields that are not part of an object's logical state, such as Object fields used to 
synchronize operations. You need not compare redundant fields, which can be 
calculated from “significant fields,” but doing so may improve the performance of the 
equals method. If a redundant field amounts to a summary description of the entire 
object, comparing this field will save you the expense of comparing the actual data if 
the comparison fails. 

5. When you are finished writing your equals method, ask yourself three questions: 
Is it symmetric, is it transitive, and is it consistent?  (The other two properties 
generally take care of themselves.) If not, figure out why these properties fail to hold, 
and modify the method accordingly. 

For a concrete example of an equals method constructed according to the above recipe, see 
PhoneNumber.equals in Item 8. Here are a few final caveats: 

• Always override hashCode when you override equals (Item 8). 
• Don't try to be too clever. 

If you simply test fields for equality, it's not hard to adhere to the equals contract. If 
you are overly aggressive in searching for equivalence, it's easy to get into trouble. It 
is generally a bad idea to take any form of aliasing into account. For example, the 
File class shouldn't attempt to equate symbolic links referring to the same file. 
Thankfully, it doesn't. 

• Don't write an equals method that relies on unreliable resources. It's extremely 
difficult to satisfy the consistency requirement if you do this. For example, 
java.net.URL's equals method relies on the IP addresses of the hosts in URLs being 
compared. Translating a host name to an IP address can require network access, and it 
isn't guaranteed to yield the same results over time. This can cause the URL equals 
method to violate the equals contract, and it has caused problems in practice. 
(Unfortunately, this behavior cannot be changed due to compatibility requirements.) 
With few exceptions, equals methods should perform deterministic computations on 
memory-resident objects. 

• Don't substitute another type for Object in the equals declaration. It is not 
uncommon for a programmer to write an equals method that looks like the following, 
and then spend hours puzzling over why it doesn't work properly: 
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   public boolean equals(MyClass o) { 
       ... 
   } 

The problem is that this method does not override Object.equals, whose argument is 
of type Object, but overloads it instead (Item 26). It is acceptable to provide such 
a “strongly typed” equals method in addition to the normal one as long as the two 
methods return the same result but there is no compelling reason to do so. It may 
provide minor performance gains under certain circumstances, but it isn't worth the 
added complexity (Item 37) 

Item 8: Always override hashCode when you override equals 

A common source of bugs is the failure to override the hashCode method. You must 
override hashCode in every class that overrides equals. Failure to do so will result in a 
violation of the general contract for Object.hashCode, which will prevent your class from 
functioning properly in conjunction with all hash-based collections, including HashMap, 
HashSet, and Hashtable. 

Here is the contract, copied from the java.lang.Object specification: 

• Whenever it is invoked on the same object more than once during an execution of 
an application, the hashCode method must consistently return the same integer, 
provided no information used in equals comparisons on the object is modified. This 
integer need not remain consistent from one execution of an application to another 
execution of the same application. 

• If two objects are equal according to the equals(Object) method, then calling 
the hashCode method on each of the two objects must produce the same integer result. 

• It is not required that if two objects are unequal according to the equals(Object) 
method, then calling the hashCode method on each of the two objects must produce 
distinct integer results. However, the programmer should be aware that producing 
distinct integer results for unequal objects may improve the performance of hash 
tables. 

The key provision that is violated when you fail to override hashCodeis the second one: 
Equal objects must have equal hash codes.  Two distinct instances may be logically equal 
according to the class's equals method, but to the Object class's hashCode method, they're 
just two objects with nothing much in common. Therefore object's hashCode method returns 
two seemingly random numbers instead of two equal numbers as required by the contract. 

For example, consider the following simplistic PhoneNumber class, whose equals method is 
constructed according to the recipe in Item 7: 

 
public final class PhoneNumber { 
    private final short areaCode; 
    private final short exchange; 
    private final short extension; 
 
    public PhoneNumber(int areaCode, int exchange, 
                       int extension) { 
        rangeCheck(areaCode,   999, "area code"); 
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        rangeCheck(exchange,   999, "exchange"); 
        rangeCheck(extension, 9999, "extension"); 
            this.areaCode  = (short) areaCode; 
            this.exchange  = (short) exchange; 
            this.extension = (short) extension; 
        } 
 
        private static void rangeCheck(int arg, int max, 
                                       String name) { 
            if (arg < 0 || arg > max) 
               throw new IllegalArgumentException(name +": " + arg); 
       } 
 
       public boolean equals(Object o) { 
           if (o == this) 
               return true; 
           if (!(o instanceof PhoneNumber)) 
               return false; 
           PhoneNumber pn = (PhoneNumber)o; 
           return pn.extension == extension && 
                  pn.exchange  == exchange  && 
                  pn.areaCode  == areaCode; 
       } 
 
       // No hashCode method! 
 
       ... // Remainder omitted 
} 

Suppose you attempt to use this class with a HashMap: 

 
Map m = new HashMap(); 
m.put(new PhoneNumber(408, 867, 5309), "Jenny"); 

At this point, you might expect m.get(new PhoneNumber(408, 867, 5309)) to return 
"Jenny", but it returns null. Notice that two PhoneNumber instances are involved: One is 
used for insertion into the HashMap, and a second, equal, instance is used for (attempted) 
retrieval. The PhoneNumber class's failure to override hashCode causes the two equal 
instances to have unequal hash codes, in violation of the hashCode contract. Therefore the 
get method looks for the phone number in a different hash bucket from the one in which it 
was stored by the put method. Fixing this problem is as simple as providing a proper 
hashCode method for the PhoneNumber class. 

So what should a hashCode method look like? It's trivial to write one that is legal but not 
good. This one, for example, is always legal, but it should never be used: 

 
// The worst possible legal hash function - never use! 
public int hashCode() { return 42; } 

It's legal because it ensures that equal objects have the same hash code. It's atrocious because 
it ensures that every object has the same hash code. Therefore every object hashes to the same 
bucket, and hash tables degenerate to linked lists. Programs that should run in linear time run 
instead in quadratic time. For large hash tables, this is the difference between working and not 
working. 
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A good hash function tends to produce unequal hash codes for unequal objects. This is exactly 
what is meant by the third provision of the hashCode contract. Ideally, a hash function should 
distribute any reasonable collection of unequal instances uniformly across all possible hash 
values. Achieving this ideal can be extremely difficult. Luckily it is not too difficult to 
achieve a fair approximation. Here is a simplerecipe: 

1. Store some constant nonzero value, say 17, in an int variable called result. 
2. For each significant field f in your object (each field taken into account by the equals 

method, that is), do the following: 
a. Compute an int hash code c for the field: 

i. If the field is a boolean, compute (f ? 0 : 1). 
ii. If the field is a byte, char, short, or int, compute (int)f. 

iii. If the field is a long, compute (int)(f ^ (f >>> 32)). 
iv. If the field is a float compute Float.floatToIntBits(f). 
v. If the field is a double, compute Double.doubleToLongBits(f), and 

then hash the resulting long as in step 2.a.iii. 
vi. If the field is an object reference and this class's equals method 

compares the field by recursively invoking equals, recursively invoke 
hashCode on the field. If a more complex comparison is required, 
compute a “canonical representation” for this field and invoke 
hashCode on the canonical representation. If the value of the field is 
null, return 0 (or some other constant, but 0 is traditional). 

vii. If the field is an array, treat it as if each element were a separate field. 
That is, compute a hash code for each significant element by applying 
these rules recursively, and combine these values as described in step 
2.b. 

b. Combine the hash code c computed in step a into result as follows: 
  
   result = 37*result + c; 

3. Return result. 
4. When you are done writing the hashCode method, ask yourself whether equal 

instances have equal hash codes. If not, figure out why and fix the problem. 

It is acceptable to exclude redundant fields from the hash code computation. In other words, it 
is acceptable to exclude any field whose value can be computed from fields that are included 
in the computation. It is required that you exclude any fields that are not used in equality 
comparisons. Failure to exclude these fields may result in a violation of the second provision 
of the hashCode contract. 

A nonzero initial value is used in step 1, so the hash value will be affected by initial fields 
whose hash value, as computed in step 2.a, is zero. If zero was used as the initial value in step 
1, the overall hash value would be unaffected by any such initial fields, which could increase 
collisions. The value 17 is arbitrary. 

The multiplication in step 2.b makes the hash value depend on the order of the fields, which 
results in a much better hash function if the class contains multiple similar fields. For 
example, if the multiplication were omitted from a String hash function built according to 
this recipe, all anagrams would have identical hash codes. The multiplier 37 was chosen 
because it is an odd prime. If it was even and the multiplication overflowed, information 
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would be lost because multiplication by two is equivalent to shifting. The advantages of using 
a prime number are less clear, but it is traditional to use primes for this purpose. 

Let's apply this recipe to the PhoneNumber class. There are three significant fields, all of type 
short. A straightforward application of the recipe yields this hash function: 

 
public int hashCode() { 
    int result = 17; 
    result = 37*result + areaCode; 
    result = 37*result + exchange; 
    result = 37*result + extension; 
    return result; 
} 

Because this method returns the result of a simple deterministic computation whose only 
inputs are the three significant fields in a PhoneNumber instance, it should be clear that equal 
PhoneNumber instances have equal hash codes. This method is, in fact, a perfectly reasonable 
hashCode implementation for PhoneNumber, on a par with those in the Java platform libraries 
as of release 1.4. It is simple, is reasonably fast, and does a reasonable job of dispersing 
unequal phone numbers into different hash buckets. 

If a class is immutable and the cost of computing the hash code is significant, you might 
consider caching the hash code in the object rather than recalculating it each time it is 
requested. If you believe that most objects of this type will be used as hash keys, then you 
should calculate the hash code when the instance is created. Otherwise, you might choose to 
lazily initialize it the first time hashCode is invoked (Item 48). It is not clear that our 
PhoneNumber class merits this treatment, but just to show you how it's done: 

 
// Lazily initialized, cached hashCode 
private volatile int hashCode = 0;  // (See Item 48) 
 
public int hashCode() { 
    if (hashCode == 0) { 
        int result = 17; 
        result = 37*result + areaCode; 
        result = 37*result + exchange; 
        result = 37*result + extension; 
        hashCode = result; 
    } 
    return hashCode; 
} 

While the recipe in this item yields reasonably good hash functions, it does not yield state-of-
the-art hash functions, nor do the Java platform libraries provide such hash functions as of 
release 1.4. Writing such hash functions is a topic of active research and an activity best left to 
mathematicians and theoretical computer scientists. Perhaps a later release of the Java 
platform will provide state-of-the-art hash functions for its classes and utility methods to 
allow average programmers to construct such hash functions. In the meantime, the techniques 
described in this item should be adequate for most applications. 

Do not be tempted to exclude significant parts of an object from the hash code 
computation to improve performance.  While the resulting hash function may run faster, its 
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quality may degrade to the point where hash tables become unusably slow. In particular, the 
hash function may, in practice, be confronted with a large collection of instances that differ 
largely in the regions that you've chosen to ignore. If this happens, the hash function will map 
all of the instances to a very few hash codes, and hash-based collections will display quadratic 
performance. This is not just a theoretical problem. The String hash function implemented in 
all Java platform releases prior to release 1.2 examined at most sixteen characters, evenly 
spaced throughout the string, starting with the first character. For large collections of 
hierarchical names such as URLs, this hash function displayed exactly the pathological 
behavior noted here. 

Many classes in the Java platform libraries, such as String, Integer, and Date, specify the 
exact value returned by their hashCode method as a function of the instance value. This is 
generally not a good idea, as it severely limits your ability to improve the hash function in 
future releases. If you leave the details of a hash function unspecified and a flaw is found in it, 
you can fix the hash function in the next release without fear of breaking compatibility with 
clients who depend on the exact values returned by the hash function 

Item 9: Always override toString 

While java.lang.Object provides an implementation of the toString method, the string 
that it returns is generally not what the user of your class wants to see. It consists of the class 
name followed by an “at” sign (@) and the unsigned hexadecimal representation of the hash 
code, for example, “PhoneNumber@163b91.” The general contract for toString says that the 
returned string should be “a concise but informative representation that is easy for a person to 
read.” While it could be argued that “PhoneNumber@163b91” is concise and easy to read, it 
isn't very informative when compared to “(408) 867-5309”. The toString contract goes on 
to say, “It is recommended that all subclasses override this method.” Good advice, indeed. 

While it isn't as important as obeying the equals and hashCode contracts (Item 7, Item 8), 
providing a good toString implementation makes your class much more pleasant to 
use. The toString method is automatically invoked when your object is passed to println, 
the string concatenation operator (+), or, as of release 1.4, assert. If you've provided a good 
toString method, generating a useful diagnostic message is as easy as: 

 
System.out.println("Failed to connect: " + phoneNumber); 

Programmers will generate diagnostic messages in this fashion whether or not you override 
toString, but the messages won't be intelligible unless you do. The benefits of providing 
a good toString method extend beyond instances of the class to objects containing 
references to these instances, especially collections. Which would you rather see when 
printing a map, “{Jenny=PhoneNumber@163b91}” or “{Jenny=(408) 867-5309}”? 

When practical, the toString method should return all of the interesting information 
contained in the object, as in the phone number example just shown. It is impractical if the 
object is large or if it contains state that is not conducive to string representation. Under these 
circumstances, toString should return a summary such as “Manhattan white pages 
(1487536 listings)” or “Thread[main, 5,main]”. Ideally, the string should be              
self-explanatory. (The Thread example flunks this test.) 
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One important decision you'll have to make when implementing a toString method is 
whether to specify the format of the return value in the documentation. It is recommended that 
you do this for value classes, such as phone numbers or matrices. The advantage of specifying 
the format is that it serves as a standard, unambiguous, human-readable representation of the 
object. This representation can be used for input and output and in persistent human-readable 
data objects such as XML documents. If you specify the format, it's usually a good idea to 
provide a matching String constructor (or static factory, see Item 1), so programmers can 
easily translate back and forth between the object and its string representation. This approach 
is taken by many value classes in the Java platform libraries, including BigInteger, 
BigDecimal, and most of the primitive wrapper classes. 

The disadvantage of specifying the format of the toString return value is that once you've 
specified it, you're stuck with it for life, assuming your class is widely used. Programmers will 
write code to parse the representation, to generate it, and to embed it into persistent data. If 
you change the representation in a future release, you'll break their code and data, and they 
will yowl. By failing to specify a format, you preserve the flexibility to add information or 
improve the format in a subsequent release. 

Whether or not you decide to specify the format, you should clearly document your 
intentions.  If you specify the format, you should do so precisely. For example, here's 
a toString method to go with the PhoneNumber class in Item 8: 

 
/** 
 * Returns the string representation of this phone number. 
 * The string consists of fourteen characters whose format 
 * is "(XXX) YYY-ZZZZ", where XXX is the area code, YYY is 
 * the extension, and ZZZZ is the exchange.  (Each of the 
 * capital letters represents a single decimal digit.) 
 * 
 * If any of the three parts of this phone number is too small 
 * to fill up its field, the field is padded with leading zeros. 
 *  For example, if the value of the exchange is 123, the last 
 * four characters of the string representation will be "0123". 
 * 
 * Note that there is a single space separating the closing 
 * parenthesis after the area code from the first digit of the 
 * exchange. 
 */ 
public String toString() { 
    return "(" + toPaddedString(areaCode, 3) + ") " + 
            toPaddedString(exchange,  3) + "-" + 
            toPaddedString(extension, 4); 
} 
/** 
 * Translates an int to a string of the specified length, 
 * padded with leading zeros.  Assumes i >= 0, 
 * 1 <= length <= 10, and Integer.toString(i) <= length. 
 */ 
private static String toPaddedString(int i, int length) { 
    String s = Integer.toString(i); 
    return ZEROS[length - s.length()] + s; 
} 
 
 
 



Effective Java: Programming Language Guide 

37 

private static String[] ZEROS = 
    {"", "0", "00", "000", "0000", "00000", 
     "000000", "0000000", "00000000", "000000000"}; 

If you decide not to specify a format, the documentation comment should read something like 
this: 

 
/** 
 * Returns a brief description of this potion. The exact details 
 * of the representation are unspecified and subject to change, 
 * but the following may be regarded as typical: 
 * 
 * "[Potion #9: type=love, smell=turpentine, look=india ink]" 
 */ 
public String toString() { ... } 

After reading this comment, programmers who produce code or persistent data that depend on 
the details of the format will have no one but themselves to blame when the format is 
changed. 

Whether or not you specify the format, it is always a good idea to provide programmatic 
access to all of the information contained in the value returned by toString. For 
example, the PhoneNumber class should contain accessors for the area code, exchange, and 
extension. If you fail to do this, you force programmers who need this information to parse 
the string. Besides reducing performance and making unnecessary work for programmers, this 
process is error prone and results in fragile systems that break if you change the format. By 
failing to provide accessors, you turn the string format into a de facto API, even if you've 
specified that it's subject to change. 

Item 10: Override clone judiciously 

The Cloneable interface was intended as a mixin interface (Item 16) for objects to advertise 
that they permit cloning. Unfortunately, it fails to serve this purpose. Its primary flaw is that it 
lacks a clone method, and Object's clone method is protected. You cannot, without 
resorting to reflection (Item 35), invoke the clone method on an object merely because it 
implements Cloneable. Even a reflective invocation may fail, as there is no guarantee that 
the object has an accessible clone method. Despite this flaw and others, the facility is in 
sufficiently wide use that it pays to understand it. This item tells you how to implement a 
well-behaved clone method, discusses when it is appropriate to do so, and briefly discusses 
alternatives. 

So what does Cloneable do, given that it contains no methods? It determines the behavior of 
Object's protected clone implementation: If a class implements Cloneable, Object's clone 
method returns a field-by-field copy of the object; otherwise it throws 
CloneNotSupportedException. This is a highly atypical use of interfaces and not one to be 
emulated. Normally, implementing an interface says something about what a class can do for 
its clients. In the case of Cloneable, however, it modifies the behavior of a protected method 
on a superclass. 

In order for implementing the Cloneable interface to have any effect on a class, it and all of 
its superclasses must obey a fairly complex, unenforceable, and largely undocumented 
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protocol. The resulting mechanism is extralinguistic: It creates an object without calling 
a constructor. 

The general contract for the clone method is weak. Here it is, copied from the specification 
for java.lang.Object: 

Creates and returns a copy of this object. The precise meaning of “copy” may depend on 
the class of the object. The general intent is that, for any object x, the expression 

 
x.clone() != x 

will be true, and the expression 

 
x.clone().getClass() == x.getClass() 

will be true, but these are not absolute requirements. While it is typically the case that 

 
x.clone().equals(x) 

will be true, this is not an absolute requirement. Copying an object will typically entail 
creating a new instance of its class, but it may require copying of internal data structures as 
well. No constructors are called. 

There are a number of problems with this contract. The provision that “no constructors are 
called” is too strong. A well-behaved clone method can call constructors to create objects 
internal to the clone under construction. If the class is final, clone can even return an object 
created by a constructor. 

The provision that x.clone().getClass() should generally be identical to x.getClass(), 
however, is too weak. In practice, programmers assume that if they extend a class and invoke 
super.clone from the subclass, the returned object will be an instance of the subclass. 
The only way a superclass can provide this functionality is to return an object obtained by 
calling super.clone. If a clone method returns an object created by a constructor, it will 
have the wrong class. Therefore, if you override the clone method in a nonfinal class, you 
should return an object obtained by invoking super.clone. If all of a class's superclasses 
obey this rule, then invoking super.clone will eventually invoke Object's clone method, 
creating an instance of the right class. This mechanism is vaguely similar to automatic 
constructor chaining, except that it isn't enforced. 

The Cloneable interface does not, as of Release 1.3, spell out the responsibilities that a class 
takes on when it implements this interface. The specification says nothing beyond the manner 
in which implementing the interface affects the behavior of Object's clone implementation. 
In practice, a class that implements Cloneable is expected to provide a properly 
functioning public clone method. It is not, in general, possible to do so unless all of 
the class's superclasses provide a well-behaved clone implementation, whether public or 
protected. 
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Suppose you want to implement Cloneable in a class whose superclasses provide well-
behaved clone methods. The object you get from super.clone() may or may not be close to 
what you'll eventually return, depending on the nature of the class. This object will be, from 
the standpoint of each superclass, a fully functional clone of the original object The fields 
declared in your class (if any) will have values identical to those of the object being cloned. If 
every field contains a primitive value or a reference to an immutable object, the returned 
object may be exactly what you need, in which case no further processing is necessary. This is 
the case, for example, for the PhoneNumber class in Item 8. In this case, all you need do is 
provide public access to Object's protected clone method: 

 
public Object clone() { 
    try { 
        return super.clone(); 
    } catch(CloneNotSupportedException e) { 
        throw new Error("Assertion failure"); // Can't happen 
    } 
} 

If, however, your object contains fields that refer to mutable objects, using this clone 
implementation can be disastrous. For example, consider the Stack class in Item 5: 

 
public class Stack { 
    private Object[] elements; 
    private int size = 0; 
 
    public Stack(int initialCapacity) { 
        this.elements = new Object[initialCapacity]; 
    } 
 
    public void push(Object e) { 
        ensureCapacity(); 
        elements[size++] = e; 
   } 
 
   public Object pop() { 
       if (size == 0) 
           throw new EmptyStackException(); 
       Object result = elements[--size]; 
       elements[size] = null; // Eliminate obsolete reference 
       return result; 
   } 
 
   // Ensure space for at least one more element. 
   private void ensureCapacity() { 
       if (elements.length == size) { 
           Object oldElements[] = elements; 
           elements = new Object[2 * elements.length + 1]; 
           System.arraycopy(oldElements, 0, elements, 0, size); 
       } 
   } 
} 

Suppose you want to make this class cloneable. If its clone method merely returns 
super.clone(), the resulting Stack instance will have the correct value in its size field, but 
its elements field will refer to the same array as the original Stack instance. Modifying 
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the original will destroy the invariants in the clone and vice versa. You will quickly find that 
your program produces nonsensical results or throws ArrayIndexOutOfBoundsException. 

This situation could never occur as a result of calling the sole constructor in the Stack class. 
In effect, the clone method functions as another constructor; you must ensure that it 
does no harm to the original object and that it properly establishes invariants on the 
clone. In order for the clone method on Stack to work properly, it must copy the internals of 
the stack. The easiest way to do this is by calling clone recursively on the elements array: 

 
public Object clone() throws CloneNotSupportedException { 
    Stack result = (Stack) super.clone(); 
    result.elements = (Object[]) elements.clone(); 
    return result; 
} 

Note that this solution would not work if the buckets field were final because the clone 
method would be prohibited from assigning a new value to the field. This is a fundamental 
problem: the clone architecture is incompatible with normal use of final fields referring 
to mutable objects, except in cases where the mutable objects may be safely shared between 
an object and its clone. In order to make a class cloneable, it may be necessary to remove 
final modifiers from some fields. 

It is not always sufficient to call clone recursively. For example, suppose you are writing a 
clone method for a hash table whose internals consist of an array of buckets, each of which 
references the first entry in a linked list of key-value pairs or is null if the bucket is empty. 
For performance, the class implements its own lightweight singly linked list instead of using 
java.util.LinkedList internally: 

 
public class HashTable implements Cloneable { 
    private Entry[] buckets = ...; 
 
    private static class Entry { 
        Object key; 
        Object value; 
        Entry  next; 
 
        Entry(Object key, Object value, Entry next) { 
            this.key   = key; 
            this.value = value; 
            this.next  = next;  
       } 
    } 
 
    ... // Remainder omitted 
} 

Suppose you merely clone the bucket array recursively, as we did for Stack: 
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// Broken - results in shared internal state! 
public Object clone() throws CloneNotSupportedException { 
    HashTable result = (HashTable) super.clone(); 
    result.buckets = (Entry[]) buckets.clone(); 
    return result; 
} 

Though the clone has its own bucket array, this array references the same linked lists as the 
original, which can easily cause nondeterministic behavior in both the clone and the original. 
To fix this problem, you'll have to copy the linked list that comprises each bucket 
individually. Here is one common approach: 

 
public class HashTable implements Cloneable { 
    private Entry[] buckets = ...; 
 
    private static class Entry { 
        Object key; 
        Object value; 
        Entry  next; 
 
        Entry(Object key, Object value, Entry next) { 
            this.key   = key; 
            this.value = value; 
            this.next  = next;  
        } 
 
        // Recursively copy the linked list headed by this Entry 
        Entry deepCopy() { 
            return new Entry(key, value, 
                next == null ? null : next.deepCopy()); 
        } 
   } 
 
   public Object clone() throws CloneNotSupportedException { 
       HashTable result = (HashTable) super.clone(); 
       result.buckets = new Entry[buckets.length]; 
       for (int i = 0; i < buckets.length; i++) 
           if (buckets[i] != null) 
               result.buckets[i] = (Entry) 
                  buckets[i].deepCopy(); 
 
       return result; 
   } 
   ... // Remainder omitted 
} 

The private class HashTable.Entry has been augmented to support a “deep copy” method. 
The clone method on HashTable allocates a new buckets array of the proper size and 
iterates over the original buckets array, deep-copying each nonempty bucket. The deep-copy 
method on Entry invokes itself recursively to copy the entire linked list headed by the entry. 
While this technique is cute and works fine if the buckets aren't too long, it is not a good way 
to clone a linked list because it consumes one stack frame for each element in the list. If 
the list is long, this could easily cause a stack overflow. To prevent this from happening, you 
can replace the recursion in deepCopy with iteration: 
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// Iteratively copy the linked list headed by this Entry 
Entry deepCopy() { 
    Entry result = new Entry(key, value, next); 
 
    for (Entry p = result; p.next != null; p = p.next) 
      p.next = new Entry(p.next.key, p.next.value, p.next.next); 
 
    return result; 
} 

A final approach to cloning complex objects is to call super.clone, set all of the fields in 
the resulting object to their virgin state, and then call higher-level methods to regenerate 
the state of the object. In the case of our Hashtable example, the buckets field would be 
initialized to a new bucket array, and the put(key, value) method (not shown) would be 
invoked for each key-value mapping in the hash table being cloned. This approach typically 
yields a simple, reasonably elegant clone method that doesn't run quite as fast as one that 
directly manipulates the innards of the object and its clone. 

Like a constructor, a clone method should not invoke any nonfinal methods on the clone 
under construction (Item 15). If clone invokes an overridden method, this method will 
execute before the subclass in which it is defined has had a chance to fix its state in the clone, 
quite possibly leading to corruption in the clone and the original. Therefore the put(key, 
value) method discussed in the previous paragraph should be either final or private. (If it is 
private, it is presumably the “helper method” for a nonfinal public method.) 

Object's clone method is declared to throw CloneNotSupportedException, but overriding 
clone methods may omit this declaration. The clone methods of final classes should omit 
the declaration because methods that don't throw checked exceptions are more pleasant to use 
than those that do (Item 41). If an extendable class, especially one designed for inheritance 
(Item 15), overrides the clone method, the over riding clone method should include 
the declaration to throw CloneNotSupportedException. Doing this allows subclasses to opt 
out of clonability gracefully, by providing the following clone method: 

 
// Clone method to guarantee that instances cannot be cloned 
public final Object clone() throws CloneNotSupportedException { 
    throw new CloneNotSupportedException(); 
} 

It is not essential that the foregoing advice be followed, as the clone method of a subclass 
that doesn't want to be cloned can always throw an unchecked exception, such as 
UnsupportedOperationException, if the clone method it overrides is not declared to throw 
CloneNotSupportedException. Common practice, however, dictates that 
CloneNotSupportedException is the correct exception to throw under these circumstances. 

To recap, all classes that implement Cloneable should override clone with a public method. 
This public method should first call super.clone and then fix any fields that need fixing. 
Typically, this means copying any mutable objects that comprise the internal “deep structure” 
of the object being cloned and replacing the references to these objects with references to the 
copies. While these internal copies can generally be made by calling clone recursively, this is 
not always the best approach. If the class contains only primitive fields or references to 
immutable objects, then it is probably the case that no fields need to be fixed. There are 
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exceptions to this rule. For example, a field representing a serial number or other unique ID or 
a field representing the object's creation time will need to be fixed, even if it is primitive or 
immutable. 

Is all this complexity really necessary? Rarely. If you extend a class that implements 
Cloneable, you have little choice but to implement a well-behaved clone method. 
Otherwise,you are probably better off providing some alternative means of object 
copying or simply not providing the capability. For example, it doesn't make much sense 
for immutable classes to support object copying, because copies would be virtually 
indistinguishable from the original. 

A fine approach to object copying is to provide a copy constructor.  A copy constructor is 
simply a constructor that takes a single argument whose type is the class containing the 
constructor, for example, 

 
public Yum(Yum yum); 

A minor variant is to provide a static factory in place of a constructor: 

 
public static Yum newInstance(Yum yum); 

The copy constructor approach and its static factory variant have many advantages over 
Cloneable/clone: They do not rely on a risk-prone extralinguistic object creation 
mechanism; they do not demand unenforceable adherence to ill-documented conventions; 
they do not conflict with the proper use of final fields; they do not require the client to catch 
an unnecessary checked exception; and they provide a statically typed object to the client. 
While it is impossible to put a copy constructor or static factory in an interface, Cloneable 
fails to function as an interface because it lacks a public clone method. Therefore you aren't 
giving up interface functionality by using a copy constructor instead of a clone method. 

Furthermore, a copy constructor (or static factory) can take an argument whose type is an 
appropriate interface implemented by the class. For example, all general-purpose collection 
implementations, by convention, provide a copy constructor whose argument is of type 
Collection or Map. Interface-based copy constructors allow the client to choose the 
implementation of the copy, rather than forcing the client to accept the implementation of the 
original. For example, suppose you have a LinkedList l, and you want to copy it as an 
ArrayList. The clone method does not offer this functionality, but it's easy with a copy 
constructor: new ArrayList(l). 

Given all of the problems associated with Cloneable, it is safe to say that other interfaces 
should not extend it and that classes designed for inheritance (Item 15) should not implement 
it. Because of its many shortcomings, some expert programmers simply choose never to 
override the clone method and never to invoke it except, perhaps, to copy arrays cheaply. Be 
aware that if you do not at least provide a well-behaved protected clone method on a class 
designed for inheritance, it will be impossible for subclasses to implement Cloneable. 
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Item 11: Consider implementing Comparable 

Unlike the other methods discussed in this chapter, the compareTo method is not declared in 
Object. Rather, it is the sole method in the java.lang.Comparable interface. It is similar in 
character to Object's equals method, except that it permits order comparisons in addition to 
simple equality comparisons. By implementing Comparable, a class indicates that its 
instances have a natural ordering. Sorting an array of objects that implement Comparable is 
as simple as this: 

 
Arrays.sort(a); 

It is similarly easy to search, compute extreme values, and maintain automatically sorted 
collections of Comparable objects. For example, the following program, which relies on the 
fact that String implements Comparable, prints an alphabetized list of its command-line 
arguments with duplicates eliminated: 

 
public class WordList { 
    public static void main(String[] args) { 
        Set s = new TreeSet(); 
        s.addAll(Arrays.asList(args)); 
        System.out.println(s); 
    } 
} 

By implementing Comparable, you allow your class to interoperate with all of the many 
generic algorithms and collection implementations that depend on this interface. You gain a 
tremendous amount of power for a small amount of effort. Virtually all of the value classes in 
the Java platform libraries implement Comparable. If you are writing a value class with an 
obvious natural ordering, such as alphabetical order, numerical order, or chronological order, 
you should strongly consider implementing this interface. This item tells you how to go about 
it. 

The general contract for the compareTo method is similar in character to that of the equals 
method. Here it is, copied from the specification for Comparable: 

Compares this object with the specified object for order. Returns a negative 
integer, zero, or a positive integer as this object is less than, equal to, or greater 
than the specified object. Throws ClassCastException if the specified 
object's type prevents it from being compared to this object. 

In the following description, the notation sgn(expression) designates the mathematical signum 
function, which is defined to return -1, 0, or 1, according to whether the value of expression is 
negative, zero, or positive. 

The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x 
and y. (This implies that x.compareTo(y) must throw an exception if and only if 
y.compareTo(x) throws an exception.) 
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• The implementor must also ensure that the relation is transitive: (x.com-pareTo(y)>0 
&& y.compareTo(z)>0) implies x.compareTo(z)>0. 

• Finally, the implementor must ensure that x.compareTo(y) == 0 implies that 
sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z. 

• It is strongly recommended, but not strictly required, that (x.compareTo(y)==0) == 
(x.equals(y)). Generally speaking, any class that implements the Comparable 
interface and violates this condition should clearly indicate this fact. The 
recommended language is “Note: This class has a natural ordering that is inconsistent 
with equals.” 

Do not be put off by the mathematical nature of this contract. Like the equals contract 
(Item 7), the compareTo contract isn't as complicated as it looks. Within a class, any 
reasonable ordering relation will satisfy the compareTo contract. Across classes, compareTo, 
unlike equals, doesn't have to work: It is permitted to throw ClassCastException if the two 
object references being compared refer to objects of different classes. Usually, that is exactly 
what compareTo should do under these circumstances. While the contract does not preclude 
interclass comparisons, there are, as of release 1.4, no classes in the Java platform libraries 
that support them. 

Just as a class that violates the hashCode contract can break other classes that depend on 
hashing, a class that violates the compareTo contract can break other classes that depend on 
comparison. Classes that depend on comparison include the sorted collections, TreeSet and 
TreeMap, and the utility classes Collections and Arrays, which contain searching and 
sorting algorithms. 

Let's go over the provisions of the compareTo contract. The first provision says that if you 
reverse the direction of a comparison between two object references, the expected thing 
happens: If the first object is less than the second, then the second must be greater than the 
first; if the first object is equal to the second, then the second must be equal to the first; and if 
the first object is greater than the second, then the second must be less than the first. The 
second provision says that if one object is greater than a second and the second is greater than 
a third, then the first must be greater than the third. The final provision says that all objects 
that compare as equal must yield the same results when compared to any other object. 

One consequence of these three provisions is that the equality test imposed by a compareTo 
method must obey the same restrictions imposed by the equals contract: reflexivity, 
symmetry, transitivity, and non-nullity. Therefore the same caveat applies: There is simply no 
way to extend an instantiable class with a new aspect while preserving the compareTo 
contract (Item 7). The same workaround applies too. If you want to add a significant aspect to 
a class that implements Comparable, don't extend it; write an unrelated class that contains a 
field of the first class. Then provide a “view” method that returns this field. This frees you to 
implement whatever compareTo method you like on the second class, while allowing its client 
to view an instance of the second class as an instance of the first class when needed. 

The final paragraph of the compareTo contract, which is a strong suggestion rather than a true 
provision, simply states that the equality test imposed by the compareTo method should 
generally return the same results as the equals method. If this provision is obeyed, the 
ordering imposed by the compareTo method is said to be consistent with equals. If it's 
violated, the ordering is said to be inconsistent with equals. A class whose compareTo method 
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imposes an order that is inconsistent with equals will still work, but sorted collections 
containing elements of the class may not obey the general contract of the appropriate 
collection interfaces (Collection, Set, or Map). This is because the general contracts for 
these interfaces are defined in terms of the equals method, but sorted collections use the 
equality test imposed by compareTo in place of equals. It is not a catastrophe if this happens, 
but it's something to be aware of. 

For example, consider the Float class, whose compareTo method is inconsistent with equals. 
If you create a HashSet and add new Float(-0.0f) and new Float(0.0f), the set will 
contain two elements because the two Float instances added to the set are unequal when 
compared using the equals method. If, however, you perform the same procedure using a 
TreeSet instead of a HashSet, the set will contain only one element because the two Float 
instances are equal when compared using the compareTo method. (See the Float 
documentation for details.) 

Writing a compareTo method is similar to writing an equals method, but there are a few key 
differences. You don't need to type check the argument prior to casting. If the argument is not 
of the appropriate type, the compareTo method should throw a ClassCastException. If the 
argument is null, the compareTo method should throw a NullPointerException. This is 
precisely the behavior that you get if you just cast the argument to the correct type and then 
attempt to access its members. 

The field comparisons themselves are order comparisons rather than equality comparisons. 
Compare object reference fields by invoking the compareTo method recursively. If a field 
does not implement Comparable or you need to use a nonstandard ordering, you can use an 
explicit Comparator instead. Either write your own or use a preexisting one as in this 
compareTo method for the CaseInsensitiveString class in Item 7: 

 
public int compareTo(Object o) { 
    CaseInsensitiveString cis = (CaseInsensitiveString)o; 
    return String.CASE_INSENSITIVE_ORDER.compare(s, cis.s); 
} 

Compare primitive fields using the relational operators < and >, and arrays by applying these 
guidelines to each element. If a class has multiple significant fields, the order in which you 
compare them is critical. You must start with the most significant field and work your way 
down. If a comparison results in anything other than zero (which represents equality), you're 
done; just return the result. If the most significant fields are equal, go on to compare the next-
most-significant fields, and so on. If all fields are equal, the objects are equal; return zero. The 
technique is demonstrated by this compareTo method for the PhoneNumber class in Item 8: 

 
public int compareTo(Object o) { 
    PhoneNumber pn = (PhoneNumber)o; 
 
    // Compare area codes 
    if (areaCode < pn.areaCode) 
        return -1; 
    if (areaCode > pn.areaCode) 
        return  1; 
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    // Area codes are equal, compare exchanges 
    if (exchange < pn.exchange) 
        return -1; 
    if (exchange > pn.exchange) 
        return  1; 
 
    // Area codes and exchanges are equal, compare extensions 
    if (extension < pn.extension) 
        return -1; 
    if (extension > pn.extension) 
        return  1; 
 
    return 0;  // All fields are equal 
} 

While this method works fine, it can be improved. Recall that the contract for compareTo 
does not specify the magnitude of the return value, only the sign. You can take advantage of 
this to simplify the code and probably make it run a bit faster: 

 
public int compareTo(Object o) { 
    PhoneNumber pn = (PhoneNumber)o; 
 
    // Compare area codes 
    int areaCodeDiff = areaCode - pn.areaCode; 
    if (areaCodeDiff != 0) 
        return areaCodeDiff; 
 
    // Area codes are equal, compare exchanges 
    int exchangeDiff = exchange - pn.exchange; 
    if (exchangeDiff != 0) 
        return exchangeDiff; 
 
    // Area codes and exchanges are equal, compare extensions 
    return extension - pn.extension; 
} 

This trick works fine here but should be used with extreme caution. Don't do it unless you're 
certain that the field in question cannot be negative or, more generally, that the difference 
between the lowest and highest possible field values is less than or equal to 
INTEGER.MAX_VALUE (231-1). The reason this trick does not work in general is that a signed 
32-bit integer is not big enough to represent the difference between two arbitrary signed      
32-bit integers. If i is a large positive int and j is a large negative int, (i-j) will overflow 
and return a negative value. The resulting compareTo method will not work. It will return 
nonsensical results for some arguments, and it will violate the first and second provisions of 
the compareTo contract. This is not a purely theoretical problem; it has caused failures in real 
systems. These failures can be difficult to debug, as the broken compareTo method works 
properly for many input values. 
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Chapter 4. Classes and Interfaces 
Classes and interfaces lie at the heart of the Java programming language. They are its basic 
units of abstraction. The language provides many powerful elements that you can use to 
design classes and interfaces. This chapter contains guidelines to help you make the best use 
of these elements so that your classes and interfaces are usable, robust, and flexible. 

Item 12: Minimize the accessibility of classes and members 

The single most important factor that distinguishes a well-designed module from a poorly 
designed one is the degree to which the module hides its internal data and other 
implementation details from other modules. A well-designed module hides all of its 
implementation details, cleanly separating its API from its implementation. Modules then 
communicate with one another only through their APIs and are oblivious to each others' inner 
workings. This concept, known as information hiding or encapsulation, is one of 
the fundamental tenets of software design [Parnas72]. 

Information hiding is important for many reasons, most of which stem from the fact that it 
effectively decouples the modules that comprise a system, allowing them to be developed, 
tested, optimized, used, understood, and modified individually. This speeds up system 
development because modules can be developed in parallel. It eases the burden of 
maintenance because modules can be understood quickly and debugged with little fear of 
harming other modules. While information hiding does not, in and of itself, cause good 
performance, it enables effective performance tuning. Once a system is complete and 
profiling has determined which modules are causing performance problems (Item 37), those 
modules can be optimized without affecting the correctness of other modules. Information 
hiding increases software reuse because individual modules do not depend on one another and 
frequently prove useful in contexts other than the one for which they were developed. Finally, 
information hiding decreases the risk in building large systems; individual modules may 
prove successful even if the system does not. 

The Java programming language has many facilities to aid information hiding. One such 
facility is the access control mechanism [JLS, 6.6], which determines the accessibility of 
classes, interfaces, and members. The accessibility of an entity is determined by the location 
where it is declared and by which, if any, of the access modifiers (private, protected, and 
public) is present in the entity's declaration. Proper use of these modifiers is essential to 
information hiding. 

The rule of thumb is that you should make each class or member as inaccessible as 
possible.  In other words, you should use the lowest possible access level consistent with the 
proper functioning of the software that you are writing. 

For top-level (non-nested) classes and interfaces, there are only two possible access levels: 
package-private and public. If you declare a top-level class or interface with the public 
modifier, it will be public; otherwise, it will be package-private. If a top-level class or 
interface can be made package-private, it should be. By making it package-private, you make 
it part of the package's implementation rather than its exported API, and you can modify it, 
replace it, or eliminate it in a subsequent release without fear of harming existing clients. If 
you make it public, you are obligated to support it forever to maintain compatibility. 
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If a package-private top-level class or interface is used only from within a single class, you 
should consider making it a private nested class (or interface) of the class in which it is used 
(Item 18). This further reduces its accessibility. It is, however, not as important to do this as it 
is to make an unnecessarily public class package-private because a package-private class is 
already part of the package's implementation rather than its API. 

For members (fields, methods, nested classes, and nested interfaces) there are four possible 
access levels, listed here in order of increasing accessibility: 

• private—  The member is accessible only inside the top-level class where it is 
declared. 

• package-private—  The member is accessible from any class in the package where it 
is declared. Technically known as default access, this is the access level you get if no 
access modifier is specified. 

• protected—  The member is accessible from subclasses of the class where it is 
declared (subject to a few restrictions [JLS, 6.6.2]) and from any class in the package 
where it is declared. 

• public—  The member is accessible from anywhere. 

After carefully designing your class's public API, your reflex should be to make all other 
members private. Only if another class in the same package really needs to access a member 
should you remove the private modifier, making the member package-private. If you find 
yourself doing this often, you should reexamine the design of your system to see if another 
decomposition might yield classes that are better decoupled from one another. That said, both 
private and package-private members are part of a class's implementation and do not normally 
impact its exported API. These fields can, however, “leak” into the exported API if the class 
implements Serializable (Item 54, Item 55). 

For members of public classes, a huge increase in accessibility occurs when the access level 
goes from package-private to protected. A protected member is part of the class's exported 
API and must be supported forever. Furthermore, a protected member of an exported class 
represents a public commitment to an implementation detail (Item 15). The need for protected 
members should be relatively rare. 

There is one rule that restricts your ability to reduce the accessibility of methods. If a method 
overrides a superclass method, it is not permitted to have a lower access level in the subclass 
than it does in the superclass [JLS, 8.4.6.3]. This is necessary to ensure that an instance of the 
subclass is usable anywhere that an instance of the superclass is usable. If you violate this 
rule, the compiler will generate an error message when you try to compile the subclass. A 
special case of this rule is that if a class implements an interface, all of the class methods that 
are also present in the interface must be declared public. This is so because all methods in an 
interface are implicitly public. 

Public classes should rarely, if ever, have public fields (as opposed to public methods). If a 
field is nonfinal or is a final reference to a mutable object, you give up the ability to limit the 
values that may be stored in the field by making it public. You also give up the ability to take 
any action when the field is modified. A simple consequence is that classes with public 
mutable fields are not thread-safe. Even if a field is final and does not refer to a mutable 
object, by making the field public, you give up the flexibility to switch to a new internal data 
representation in which the field does not exist. 
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There is one exception to the rule that public classes should not have public fields. Classes are 
permitted to expose constants via public static final fields. By convention, such fields have 
names consisting of capital letters, with words separated by underscores (Item 38). It is 
critical that these fields contain either primitive values or references to immutable objects 
(Item 13). A final field containing a reference to a mutable object has all the disadvantages of 
a nonfinal field. While the reference cannot be modified, the referenced object can be 
modified—with disastrous results. 

Note that a nonzero-length array is always mutable, so it is nearly always wrong to have 
public static final array field. If a class has such a field, clients will be able to modify the 
contents of the array. This is a frequent source of security holes: 

 
//Potential security hole! 
public static final Type[] VALUES =  { ... }; 

The public array should be replaced by a private array and a public immutable list: 

 
private static final Type[] PRIVATE_VALUES = { ... }; 
 
public static final List VALUES = 
   Collections.unmodifiableList(Arrays.asList(PRIVATE_VALUES)); 

Alternatively, if you require compile-time type safety and are willing to tolerate a 
performance loss, you can replace the public array field with a public method that returns a 
copy of a private array: 

 
private static final Type[] PRIVATE_VALUES = { ... }; 
 
public static final Type[] values() { 
    return (Type[]) PRIVATE_VALUES.clone(); 
} 

To summarize, you should always reduce accessibility as much as possible. After carefully 
designing a minimal public API, you should prevent any stray classes, interfaces, or members 
from becoming a part of the API. With the exception of public static final fields, public 
classes should have no public fields. Ensure that objects referenced by public static final fields 
are immutable. 

Item 13: Favor immutability 

An immutable class is simply a class whose instances cannot be modified. All of the 
information contained in each instance is provided when it is created and is fixed for the 
lifetime of the object. The Java platform libraries contain many immutable classes, including 
String, the primitive wrapper classes, and BigInteger and BigDecimal. There are many 
good reasons for this: Immutable classes are easier to design, implement, and use than 
mutable classes. They are less prone to error and are more secure. 
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To make a class immutable, follow these five rules: 

1. Don't provide any methods that modify the object (known as mutators). 
2. Ensure that no methods may be overridden. This prevents careless or malicious 

subclasses from compromising the immutable behavior of the class. Preventing 
method overrides is generally done by making the class final, but there are alternatives 
that we'll discuss later. 

3. Make all fields final. This clearly expresses your intentions in a manner that is 
enforced by the system. Also, it may be necessary to ensure correct behavior if 
a reference to a newly created instance is passed from one thread to another without 
synchronization, depending on the results of ongoing efforts to rework the memory 
model [Pugh01a]. 

4. Make all fields private. This prevents clients from modifying fields directly. While it 
is technically permissible for immutable classes to have public final fields containing 
primitive values or references to immutable objects, it is not recommended because it 
precludes changing the internal representation in a later release (Item 12). 

5. Ensure exclusive access to any mutable components. If your class has any fields 
that refer to mutable objects, ensure that clients of the class cannot obtain references to 
these objects. Never initialize such a field to a client-provided object reference nor 
return the object reference from an accessor. Make defensive copies (Item 24) in 
contructors, accessors, and readObject methods (Item 56). 

Many of the example classes in previous items are immutable. One such class is PhoneNumber 
in Item 8, which has accessors for each attribute but no corresponding mutators. Here is 
a slightly more complex example: 

 
public final class Complex { 
    private final float re; 
    private final float im; 
 
    public Complex(float re, float im) { 
        this.re = re; 
        this.im = im; 
    } 
 
    // Accessors with no corresponding mutators 
    public float realPart()      { return re; } 
    public float imaginaryPart() { return im; } 
 
    public Complex add(Complex c) { 
        return new Complex(re + c.re, im + c.im); 
    } 
 
    public Complex subtract(Complex c) { 
        return new Complex(re - c.re, im - c.im); 
    } 
 
    public Complex multiply(Complex c) { 
        return new Complex(re*c.re - im*c.im, 
                           re*c.im + im*c.re); 
    } 
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    public Complex divide(Complex c) { 
        float tmp = c.re*c.re + c.im*c.im; 
        return new Complex((re*c.re + im*c.im)/tmp, 
                           (im*c.re - re*c.im)/tmp); 
    } 
 
    public boolean equals(Object o) { 
       if (o == this) 
           return true; 
       if (!(o instanceof Complex)) 
           return false; 
       Complex c = (Complex)o; 
       return (Float.floatToIntBits(re) ==    // See page 33 to 
               Float.floatToIntBits(c.re)) && // find out why 
              (Float.floatToIntBits(im) ==    // floatToIntBits 
               Float.floatToIntBits(im));     // is used. 
    } 
 
    public int hashCode() { 
        int result = 17 + Float.floatToIntBits(re); 
        result = 37*result + Float.floatToIntBits(im); 
        return result; 
    } 
 
    public String toString() { 
        return "(" + re + " + " + im + "i)"; 
    } 
} 

This class represents a complex number (a number with both real and imaginary parts). In 
addition to the standard Object methods, it provides accessors for the real and imaginary 
parts and provides the four basic arithmetic operations: addition, subtraction, multiplication, 
and division. Notice how the arithmetic operations create and return a new Complex instance 
rather than modifying this instance. This pattern is used in most nontrivial immutable classes. 
It is known as the functional approach because methods return the result of applying 
a function to their operand without modifying it. Contrast this to the more common 
procedural approach in which methods apply a procedure to their operand causing its state to 
change. 

The functional approach may appear unnatural if you're not familiar with it, but it enables 
immutability, which has many advantages. Immutable objects are simple. An immutable 
object can be in exactly one state, the state in which it was created. If you make sure that all 
constructors establish class invariants, then it is guaranteed that these invariants will remain 
true for all time, with no further effort on your part or on the part of the programmer who uses 
the class. Mutable objects, on the other hand, can have arbitrarily complex state spaces. If 
the documentation does not provide a precise description of the state transitions performed by 
mutator methods, it can be difficult or impossible to use a mutable class reliably. 

Immutable objects are inherently thread-safe; they require no synchronization.  They 
cannot be corrupted by multiple threads accessing them concurrently. This is far and away 
the easiest approach to achieving thread safety. In fact, no thread can ever observe any effect 
of another thread on an immutable object. Therefore immutable objects can be shared 
freely. Immutable classes should take advantage of this by encouraging clients to reuse 
existing instances wherever possible. One easy way to do this is to provide public static final 



Effective Java: Programming Language Guide 

53 

constants for frequently used values. For example, the Complex class might provide 
the following constants: 

 
public static final Complex ZERO = new Complex(0, 0); 
public static final Complex ONE  = new Complex(1, 0); 
public static final Complex I  =   new Complex(0, 1); 

This approach can be taken one step further. An immutable object can provide static factories 
that cache frequently requested instances and avoid creating new instances whenever 
a preexisting instance is requested. The BigInteger and Boolean classes both have such 
static factories. Using such static factories causes clients to share preexisting instances rather 
than creating new ones, reducing memory footprint and garbage collection costs. 

A consequence of the fact that immutable objects can be shared freely is that you never have 
to make defensive copies (Item 24). In fact, you never have to make any copies at all because 
the copies would be forever equivalent to the originals. Therefore you need not and should not 
provide a clone method or copy constructor (Item 10) on an immutable class. This was not 
well understood in the early days of the Java platform, so the String class does have a copy 
constructor, but it should rarely, if ever, be used (Item 4). 

Not only can you share immutable objects, but you can share their internals.  For 
example, the BigInteger class uses a sign-magnitude representation internally. The sign is 
represented by an int, and the magnitude is represented by an int array. The negate method 
produces a new BigInteger of like magnitude and opposite sign. It does not need to copy 
the array; the newly created BigInteger points to the same internal array as the original. 

Immutable objects make great building blocks for other objects, whether mutable or 
immutable. It's much easier to maintain the invariants of a complex object if you know that its 
component objects will not change underneath it. A special case of this principle is that 
immutable objects make great map keys and set elements; you don't have to worry about their 
values changing once they're in the map or set, which would destroy the map or set's 
invariants. 

The only real disadvantage of immutable classes is that they require a separate object 
for each distinct value.  Creating these objects can be costly, especially if they are large. For 
example, suppose that you have a million-bit BigInteger and you want to complement its 
low-order bit: 

 
BigInteger moby = ...; 
moby = moby.flipBit(0); 

The flipBit method creates a new BigInteger instance, also a million bits long, that differs 
from the original in only one bit. The operation requires time and space proportional to 
the size of the BigInteger. Contrast this to java.util.BitSet. Like BigInteger, BitSet 
represents an arbitrarily long sequence of bits, but unlike BigInteger, BitSet is mutable. 
The BitSet class provides a method that allows you to change the state of a single bit of 
a million-bit instance in constant time. 
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The performance problem is magnified if you perform a multistep operation that generates 
a new object at every step, eventually discarding all objects except the final result. There are 
two approaches to coping with this problem. The first is to guess which multistep operations 
will be commonly required and provide them as primitives. If a multistep operation is 
provided as a primitive, the immutable class does not have to create a separate object at each 
step. Internally, the immutable class can be arbitrarily clever. For example, BigInteger has 
a package-private mutable “companion class” that it uses to speed up multistep operations 
such as modular exponentiation. It is much harder to use the mutable companion class for all 
of the reasons outlined earlier, but luckily you don't have to. The implementors of 
BigInteger did all the hard work for you. 

This approach works fine if you can accurately predict which complex multistage operations 
clients will want to perform on your immutable class. If not, then your best bet is to provide 
a public mutable companion class. The main example of this approach in the Java platform 
libraries is the String class, whose mutable companion is StringBuffer. Arguably, BitSet 
plays the role of mutable companion to BigInteger under certain circumstances. 

Now that you know how to make an immutable class and you understand the pros and cons of 
immutability, let's discuss a few design alternatives. Recall that to guarantee immutability, 
a class must not permit any of its methods to be overridden. In addition to making a class 
final, there are two other ways to guarantee this. One way is to make each method of the class, 
but not the class itself, final. The sole advantage of this approach is that it allows 
programmers to extend the class by adding new methods built atop the old ones. It is equally 
effective to provide the new methods as static methods in a separate, noninstantiable utility 
class (Item 3), so this approach isn't recommended. 

A second alternative to making an immutable class final is to make all of its constructors 
private or package-private, and to add public static factories in place of the public 
constructors (Item 1). To make this concrete, here's how Complex would look if this approach 
were used: 

 
// Immutable class with static factories instead of constructors 
public class Complex { 
    private final float re; 
    private final float im; 
 
    private Complex(float re, float im) { 
        this.re = re; 
        this.im = im; 
    } 
 
    public static Complex valueOf(float re, float im) { 
        return new Complex(re, im); 
    } 
 
    ... // Remainder unchanged 
} 

While this approach is not commonly used, it is often the best of the three alternatives. It is 
the most flexible because it allows the use of multiple package-private implementation 
classes. To its clients that reside outside its package, the immutable class is effectively final 
because it is impossible to extend a class that comes from another package and that lacks 
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a public or protected constructor. Besides allowing the flexibility of multiple implementation 
classes, this approach makes it possible to tune the performance of the class in subsequent 
releases by improving the object-caching capabilities of the static factories. 

Static factories have many other advantages over constructors, as discussed in Item 1. For 
example, suppose that you want to provide a means of creating a complex number based on 
its polar coordinates. This would be very messy using constructors because the natural 
constructor would have the same signature that we already used: Complex(float, float). 
With static factories it's easy; just add a second static factory with a name that clearly 
identifies its function: 

 
public static Complex valueOfPolar(float r, float theta) { 
    return new Complex((float) (r * Math.cos(theta)), 
                       (float) (r * Math.sin(theta))); 
} 

It was not widely understood that immutable classes had to be effectively final when 
BigInteger and BigDecimal were written, so all of their methods may be overridden. 
Unfortunately, this could not be corrected after the fact while preserving upward 
compatibility. If you write a class whose security depends on the immutability of 
a BigInteger or BigDecimal argument from an untrusted client, you must check to see that 
the argument is a “real” BigInteger or BigDecimal, rather than an instance of an untrusted 
subclass. If it is the latter, you must defensively copy it under the assumption that it might be 
mutable (Item 24): 

 
public void foo(BigInteger b) { 
    if (b.getClass() != BigInteger.class) 
        b = new BigInteger(b.toByteArray()); 
    ... 
} 

The list of rules for immutable classes at the beginning of this item says that no methods may 
modify the object and that all fields must be final. In fact these rules are a bit stronger than 
necessary and can be relaxed to improve performance. In truth, no method may produce an 
externally visible change in the object's state. However, many immutable classes have one or 
more nonfinal redundant fields in which they cache the results of expensive computations the 
first time they are required. If the same computation is required in future, the cached value is 
returned, saving the cost of recalculation. This trick works precisely because the object is 
immutable; its immutability guarantees that the computation would yield the same result if it 
were performed again. 

For example, the hashCode method for PhoneNumber (Item 8,) computes the hash code 
the first time it is invoked and caches it in case it is needed again. This technique, which is 
a classic example of lazy initialization (Item 48), is also used by the String class. No 
synchronization is necessary, as it is not a problem if the hash value is recalculated once or 
twice. Here is the general idiom to return a cached, lazily initialized function of an immutable 
object: 
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// Cached, lazily initialized function of an immutable object 
private volatile Foo cachedFooVal = UNLIKELY_FOO_VALUE; 
 
public Foo foo() { 
    int result = cachedFooVal; 
    if (result == UNLIKELY_FOO_VALUE) 
        result = cachedFooVal = fooValue(); 
    return result; 
} 
 
// Private helper function to calculate our foo value 
private Foo fooVal() { ... } 

One caveat should be added concerning serializability. If you choose to have your immutable 
class implement Serializable and it contains one or more fields that refer to mutable 
objects, you must provide an explicit readObject or readResolve method, even if the 
default serialized form is acceptable. The default readObject method would allow an 
attacker to create a mutable instance of your otherwise immutable class. This topic is covered 
in detail in Item 56. 

To summarize, resist the urge to write a set method for every get method. Classes should be 
immutable unless there's a very good reason to make them mutable. Immutable classes 
provide many advantages, and their only disadvantage is the potential for performance 
problems under certain circumstances. You should always make small value objects, such as 
PhoneNumber and Complex, immutable. (There are several classes in the Java platform 
libraries, such as java.util.Date and java.awt.Point, that should have been immutable 
but aren't.) You should seriously consider making larger value objects, such as String and 
BigInteger, immutable as well. You should provide a public mutable companion class for 
your immutable class only once you've confirmed that it's necessary to achieve satisfactory 
performance (Item 37). 

There are some classes for which immutability is impractical, including “process classes” 
such as Thread and TimerTask. If a class cannot be made immutable, you should still 
limit its mutability as much as possible. Reducing the number of states in which an object 
can exist makes it easier to reason about the object and reduces the likelihood of errors. 
Therefore constructors should create fully initialized objects with all of their invariants 
established and they should not pass partially constructed instances to other methods. You 
should not provide a public initialization method separate from the constructor unless there is 
an extremely good reason to do so. Similarly, you should not provide a “reinitialize” method, 
which enables an object to be reused as if it had been constructed with a different initial state. 
A reinitialize method generally provides little if any performance benefit at the expense of 
increased complexity. 

The TimerTask class exemplifies these principles. It is mutable, but its state space is kept 
intentionally small. You create an instance, schedule it for execution, and optionally cancel it. 
Once a timer task has run to completion or has been cancelled, you may not reschedule it. 

A final note should be added concerning the Complex class in this item. This example was 
meant only to illustrate immutability. It is not an industrial strength complex number 
implementation. It uses the standard formulas for complex multiplication and division, which 
are not correctly rounded and provide poor semantics for complex NaNs and infinities 
[Kahan91, Smith62, Thomas94] 
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Item 14: Favor composition over inheritance 

Inheritance is a powerful way to achieve code reuse, but it is not always the best tool for 
the job. Used inappropriately, it leads to fragile software. It is safe to use inheritance within 
a package, where the subclass and the superclass implementation are under the control of the 
same programmers. It is also safe to use inheritance when extending classes specifically 
designed and documented for extension (Item 15). Inheriting from ordinary concrete classes 
across package boundaries, however, is dangerous. As a reminder, this book uses the word 
“inheritance” to mean implementation inheritance (when one class extends another). 
The problems discussed in this item do not apply to interface inheritance (when a class 
implements an interface or where one interface extends another). 

Unlike method invocation, inheritance breaks encapsulation [Snyder86].  In other words, 
a subclass depends on the implementation details of its superclass for its proper function. 
The superclass's implementation may change from release to release, and if it does, 
the subclass may break, even though its code has not been touched. As a consequence, 
a subclass must evolve in tandem with its superclass, unless the superclass's authors have 
designed and documented it specifically for the purpose of being extended. 

To make this concrete, let's suppose we have a program that uses a HashSet. To tune 
the performance of our program, we need to query the HashSet as to how many elements 
have been added since it was created (not to be confused with its current size, which goes 
down when an element is removed). To provide this functionality, we write a HashSet variant 
that keeps count of the number of attempted element insertions and exports an accessor for 
this count. The HashSet class contains two methods capable of adding elements, add and 
addAll, so we override both of these methods: 

 
// Broken - Inappropriate use of inheritance! 
public class InstrumentedHashSet extends HashSet { 
    // The number of attempted element insertions 
    private int addCount = 0; 
 
    public InstrumentedHashSet() { 
    } 
 
    public InstrumentedHashSet(Collection c) { 
        super(c); 
    } 
    public InstrumentedHashSet(int initCap, float loadFactor) { 
        super(initCap, loadFactor); 
    } 
 
    public boolean add(Object o) { 
        addCount++; 
        return super.add(o); 
    } 
 
    public boolean addAll(Collection c) { 
        addCount += c.size(); 
        return super.addAll(c); 
    } 
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    public int getAddCount() { 
        return addCount; 
    } 
} 

This class looks reasonable, but it doesn't work. Suppose we create an instance and add three 
elements using the addAll method: 

 
InstrumentedHashSet s = new InstrumentedHashSet(); 
s.addAll(Arrays.asList(new String[] {"Snap","Crackle","Pop"})); 

We would expect the getAddCount method to return three at this point, but it returns six. 
What went wrong? Internally, HashSet's addAll method is implemented on top of its add 
method, although HashSet, quite reasonably, does not document this implementation detail. 
The addAll method in InstrumentedHashSet added three to addCount and then invoked 
HashSet's addAll implementation using super.addAll. This in turn invoked the add 
method, as overridden in InstrumentedHashSet, once for each element. Each of these three 
invocations added one more to addCount, for a total increase of six: Each element added with 
the addAll method is double-counted. 

We could “fix” the subclass by eliminating its override of the addAll method. While 
the resulting class would work, it would depend for its proper function on the fact that 
HashSet's addAll method is implemented on top of its add method. This “self-use” is 
an implementation detail, not guaranteed to hold in all implementations of the Java platform 
and subject to change from release to release. Therefore, the resulting InstrumentedHashSet 
class would be fragile. 

It would be slightly better to override the addAll method to iterate over the specified 
collection, calling the add method once for each element. This would guarantee the correct 
result whether or not HashSet's addAll method were implemented atop its add method 
because HashSet's addAll implementation would no longer be invoked. This technique, 
however, does not solve all our problems. It amounts to reimplementing superclass methods 
that may or may not result in self-use, which is difficult, time-consuming, and error prone. 
Additionally, it isn't always possible, as some methods cannot be implemented without access 
to private fields inaccessible to the subclass. 

A related cause of fragility in subclasses is that their superclass can acquire new methods in 
subsequent releases. Suppose a program depends for its security on the fact that all elements 
inserted into some collection satisfy some predicate. This can be guaranteed by subclassing 
the collection and overriding each method capable of adding an element to ensure that the 
predicate is satisfied before adding the element. This works fine until a new method capable 
of adding an element is added to the superclass in a subsequent release. Once this happens, it 
becomes possible to add an “illegal” element to an instance of the subclass merely by 
invoking the new method, which is not overridden in the subclass. This is not a purely 
theoretical problem. Several security holes of this nature had to be fixed when Hashtable and 
Vector were retrofitted to participate in the Collections Framework. 

Both of the above problems stem from overriding methods. You might think that it is safe to 
extend a class if you merely add new methods and refrain from overriding existing methods. 
While this sort of extension is much safer, it is not without risk. If the superclass acquires a 
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new method in a subsequent release and you have the bad luck to have given the subclass a 
method with the same signature and a different return type, your subclass will no longer 
compile [JLS, 8.4.6.3]. If you've given the subclass a method with exactly the same signature 
as the new superclass method, then you're now overriding it, so you're subject to the two 
problems described above. Furthermore, it is doubtful that your method will fulfill the 
contract of the new superclass method, as that contract had not yet been written when you 
wrote the subclass method. 

Luckily, there is a way to avoid all of the problems described earlier. Instead of extending 
an existing class, give your new class a private field that references an instance of the existing 
class. This design is called composition because the existing class becomes a component of 
the new one. Each instance method in the new class invokes the corresponding method on 
the contained instance of the existing class and returns the results. This is known as 
forwarding, and the methods in the new class are known as forwarding methods. 
The resulting class will be rock solid, with no dependencies on the implementation details of 
the existing class. Even adding new methods to the existing class will have no impact on 
the new class. To make this concrete, here's a replacement for InstrumentedHashSet that 
uses the composition/forwarding approach: 

 
// Wrapper class - uses composition in place of inheritance 
public class InstrumentedSet implements Set { 
    private final Set s; 
    private int addCount = 0; 
 
    public InstrumentedSet(Set s) { 
        this.s = s; 
    } 
 
    public boolean add(Object o) { 
        addCount++; 
        return s.add(o); 
    } 
 
    public boolean addAll(Collection c) { 
        addCount += c.size(); 
        return s.addAll(c); 
    } 
 
    public int getAddCount() { 
        return addCount; 
    } 
 
    // Forwarding methods 
    public void clear()               { s.clear();             } 
    public boolean contains(Object o) { return s.contains(o);  } 
    public boolean isEmpty()          { return s.isEmpty();    } 
    public int size()                 { return s.size();       } 
    public Iterator iterator()        { return s.iterator();   } 
    public boolean remove(Object o)   { return s.remove(o);    } 
    public boolean containsAll(Collection c) 
                                   { return s.containsAll(c);  } 
    public boolean removeAll(Collection c) 
                                   { return s.removeAll(c);    } 
    public boolean retainAll(Collection c) 
                                   { return s.retainAll(c);    } 
    public Object[] toArray()           { return s.toArray();  } 
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    public Object[] toArray(Object[] a) { return s.toArray(a); } 
    public boolean equals(Object o)     { return s.equals(o);  } 
    public int hashCode()               { return s.hashCode(); } 
    public String toString()            { return s.toString(); } 
} 

The design of the InstrumentedSet class is enabled by the existence of the Set interface, 
which captures the functionality of the HashSet class. Besides being robust, this design is 
extremely flexible. The InstrumentedSet class implements the Set interface and has a single 
constructor whose argument is also of type Set. In essence, the class transforms one Set into 
another, adding the instrumentation functionality. Unlike the inheritance-based approach, 
which works only for a single concrete class and requires a separate constructor for each 
supported constructor in the superclass, the wrapper class can be used to instrument any Set 
implementation and will work in conjunction with any preexisting constructor. For example, 

 
Set s1 = new InstrumentedSet(new TreeSet(list)); 
Set s2 = new InstrumentedSet(new HashSet(capacity, loadFactor)); 

The InstrumentedSet class can even be used to temporarily instrument a set instance that 
has already been used without instrumentation: 

 
static void f(Set s) { 
    InstrumentedSet sInst = new InstrumentedSet(s); 
    ... // Within this method use sInst instead of s 
} 

The InstrumentedSet class is known as a wrapper class because each InstrumentedSet 
instance wraps another Set instance. This is also known as the Decorator pattern [Gamma98, 
p.175] because the InstrumentedSet class “decorates” a set by adding instrumentation. 
Sometimes the combination of composition and forwarding is erroneously referred to as 
delegation. Technically, it's not delegation unless the wrapper object passes itself to the 
wrapped object [Gamma98, p.20]. 

The disadvantages of wrapper classes are few. One caveat is that wrapper classes are not 
suited for use in callback frameworks, wherein objects pass self-references to other objects for 
later invocations (“callbacks”). Because the wrapped object doesn't know of its wrapper, it 
passes a reference to itself (this) and callbacks elude the wrapper. This is known as the SELF 
problem [Lieberman86]. Some people worry about the performance impact of forwarding 
method invocations or the memory footprint impact of wrapper objects. Neither of these 
things turns out to have much impact in practice. It is a bit tedious to write forwarding 
methods, but the tedium is partially offset by the fact that you have to write only one 
constructor. 

Inheritance is appropriate only in circumstances where the subclass really is a subtype of the 
superclass. In other words, a class B should extend a class only A if an “is-a” relationship 
exists between the two classes. If you are tempted to have a class B extend a class A, ask 
yourself the question: “Is every B really an A?” If you cannot truthfully answer yes to this 
question, B should not extend A. If the answer is no, it is often the case that B should contain a 
private instance of A and expose a smaller and simpler API: A is not an essential part of B, 
merely a detail of its implementation. 
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There are a number of obvious violations of this principle in the Java platform libraries. For 
example, a stack is not a vector, so Stack should not extend Vector. Similarly, a property list 
is not a hash table so Properties should not extend Hashtable. In both cases, composition 
would have been appropriate. 

If you use inheritance where composition is appropriate, you needlessly expose 
implementation details. The resulting API ties you to the original implementation, forever 
limiting the performance of your class. More seriously, by exposing the internals you let the 
client access them directly. At the very least, this can lead to confusing semantics. For 
example, if p refers to a Properties instance, then p.getProperty(key) may yield different 
results from p.get(key): The former method takes defaults into account, while the latter 
method, which is inherited from Hashtable, does not. Most seriously, the client may be able 
to corrupt invariants of the subclass by modifying the superclass directly. In the case of 
Properties, the designers intended that only strings be allowed as keys and values, but direct 
access to the underlying Hashtable allows this invariant to be violated. Once this invariant is 
violated, it is no longer possible to use other parts of the Properties API (load and store). 
By the time this problem was discovered, it was too late to correct it because clients depended 
on the use of nonstring keys and values. 

There is one last set of questions you should ask yourself before deciding to use inheritance 
rather than composition. Does the class that you're contemplating extending have any flaws in 
its API? If so, are you comfortable propagating those flaws into the API of your class? 
Inheritance propagates any flaws in the superclass's API, while composition allows you to 
design a new API that hides these flaws. 

To summarize, inheritance is powerful, but it is problematic because it violates encapsulation. 
It is appropriate only when a genuine subtype relationship exists between the subclass and 
the superclass. Even then, inheritance may lead to fragility if the subclass is in a different 
package from the superclass and the superclass is not designed for extension. To avoid this 
fragility, use composition and forwarding instead of inheritance, especially if an appropriate 
interface to implement a wrapper class exists. Not only are wrapper classes more robust than 
subclasses, they are also more powerful. 

Item 15: Design and document for inheritance or else prohibit it 

Item 14 alerted you to the dangers of subclassing a “foreign” class that was not designed and 
documented for inheritance. So what does it mean for a class to be designed and documented 
for inheritance? 

First, the class must document precisely the effects of overriding any method. In other 
words, the class must document itsself-use of overridable methods: For each public or 
protected method or constructor, its documentation must indicate which overridable methods 
it invokes, in what sequence, and how the results of each invocation affect subsequent 
processing. (By overridable, we mean nonfinal and either public or protected.) More 
generally, a class must document any circumstances under which it might invoke 
an overridable method. For example, invocations might come from background threads or 
static initializers. 

By convention, a method that invokes overridable methods contains a description of these 
invocations at the end of its doc comment. The description begins with the phrase, “This 
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implementation.” This phrase should not be taken to indicate that the behavior may change 
from release to release. It connotes that the description concerns the inner workings of the 
method. Here's an example, copied from the specification for 
java.util.AbstractCollection: 

 
public boolean remove(Object o) 

Removes a single instance of the specified element from this collection, if it is 
present (optional operation). More formally, removes an element e such that 
(o==null ? e==null : o.equals(e)), if the collection contains one or more 
such elements. Returns true if the collection contained the specified element 
(or equivalently, if the collection changed as a result of the call). 

This implementation iterates over the collection looking for the specified 
element. If it finds the element, it removes the element from the collection 
using the iterator's remove method. Note that this implementation throws an 
UnsupportedOperationException if the iterator returned by this collection's 
iterator method does not implement the remove method. 

This documentation leaves no doubt that overriding the iterator method will affect the 
behavior of the remove method. Furthermore, it describes exactly how the behavior of the 
Iterator returned by the iterator method will affect the behavior of the remove method. 
Contrast this to the situation in Item 14, wherein the programmer subclassing HashSet simply 
could not say whether overriding the add method would affect the behavior of the addAll 
method. 

But doesn't this violate the dictum that good API documentation should describe what a given 
method does and not how it does it? Yes it does! This is an unfortunate consequence of the 
fact that inheritance violates encapsulation. To document a class so that it can be safely 
subclassed, you must describe implementation details that should otherwise be left 
unspecified. 

Design for inheritance involves more than just documenting patterns of self-use. To allow 
programmers to write efficient subclasses without undue pain, a class may have to provide 
hooks into its internal workings in the form of judiciously chosen protected methods or, 
in rare instances, protected fields. For example, consider the removeRange method from 
java.util.AbstractList: 

 
protected void removeRange(int fromIndex, int toIndex) 

Removes from this list all of the elements whose index is between fromIndex, 
inclusive, and toIndex, exclusive. Shifts any succeeding elements to the left 
(reduces their index). This call shortens the ArrayList by (toIndex - 
fromIndex) elements. (If toIndex==fromIndex, this operation has no effect.) 

This method is called by the clear operation on this list and its sublists. 
Overriding this method to take advantage of the internals of the list 
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implementation can substantially improve the performance of the clear 
operation on this list and its subLists. 

This implementation gets a list iterator positioned before fromIndex and 
repeatedly calls ListIterator.next followed by ListIterator.remove, 
until the entire range has been removed. Note: If ListIterator.remove 
requires linear time, this implementation requires quadratic time. 

Parameters: 

fromIndex  index of first element to be removed. 
toIndex  index after last element to be removed. 

This method is of no interest to end users of a List implementation. It is provided solely to 
make it easy for subclasses to provide a fast clear method on sublists. In the absence of the 
removeRange method, subclasses would have to make do with quadratic performance when 
the clear method was invoked on sublists or rewrite the entire subList mechanism from 
scratch—not an easy task! 

So how do you decide what protected methods or fields to expose when designing a class for 
inheritance? Unfortunately, there is no magic bullet. The best you can do is to think hard, take 
your best guess, and then test it by writing some subclasses. You should provide as few 
protected methods and fields as possible because each one represents a commitment to an 
implementation detail. On the other hand, you must not provide too few, as a missing 
protected method can render a class practically unusable for inheritance. 

When you design for inheritance a class that is likely to achieve wide use, realize that you are 
committing forever to the self-use patterns that you document and to the implementation 
decisions implicit in its protected methods and fields. These commitments can make it 
difficult or impossible to improve the performance or functionality of the class in a 
subsequent release. 

Also, note that the special documentation required for inheritance clutters up the normal 
documentation, which is designed for programmers who create instances of your class and 
invoke methods on them. As of this writing, there is little in the way of tools or commenting 
conventions to separate ordinary API documentation from information of interest only to 
programmers implementing subclasses. 

There are a few more restrictions that a class must obey to allow inheritance. Constructors 
must not invoke overridable methods, directly or indirectly. If this rule is violated, it is 
likely that program failure will result. The superclass constructor runs before the subclass 
constructor, so the overriding method in the subclass will get invoked before the subclass 
constructor has run. If the overriding method depends on any initialization performed by the 
subclass constructor, then the method will not behave as expected. To make this concrete, 
here's a tiny class that violates this rule: 
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public class Super { 
    // Broken - constructor invokes overridable method 
    public Super() { 
        m(); 
    } 
 
    public void m() { 
    } 
} 

Here's a subclass that overrides m, which is erroneously invoked by Super's sole constructor: 

 
final class Sub extends Super { 
    private final Date date; // Blank final, set by constructor 
 
    Sub() { 
        date = new Date(); 
    } 
 
    // Overrides Super.m, invoked by the constructor Super() 
    public void m() { 
        System.out.println(date); 
    } 
 
    public static void main(String[] args) { 
        Sub s = new Sub(); 
        s.m(); 
    } 
} 

You might expect this program to print out the date twice, but it prints out null the first time 
because the method m is invoked by the constructor Super() before the constructor Sub() has 
a chance to initialize the date field. Note that this program observes a final field in two 
different states. 

The Cloneable and Serializable interfaces present special difficulties when designing for 
inheritance. It is generally not a good idea for a class designed for inheritance to implement 
either of these interfaces, as they place a substantial burden on programmers who extend the 
class. There are, however, special actions that you can take to allow subclasses to implement 
these interfaces without mandating that they do so. These actions are described in Item 10 and 
Item 54. 

If you do decide to implement Cloneable or Serializable in a class designed for 
inheritance, you should be aware that because the clone and readObject methods behave 
a lot like constructors, a similar restriction applies: Neither clone nor readObject may 
invoke an overridable method, directly or indirectly. In the case of the readObject 
method, the overriding method will run before the subclass's state has been deserialized. In 
the case of the clone method, the overriding method will run before the subclass's clone 
methods has a chance to fix the clone's state. In either case, a program failure is likely to 
follow. In the case of the clone method, the failure can do damage to the object being cloned 
as well as to the clone itself. 

Finally, if you decide to implement Serializable in a class designed for inheritance and 
the class has a readResolve or writeReplace method, you must make the readResolve or 
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writeReplace method protected rather than private. If these methods are private, they 
will be silently ignored by subclasses. This is one more case where an implementation detail 
becomes part of a class's API to permit inheritance. 

By now, it should be apparent that designing a class for inheritance places substantial 
limitations on the class. This is not a decision to be undertaken lightly. There are some 
situations where it is clearly the right thing to do, such as abstract classes, including skeletal 
implementations of interfaces (Item 16). There are other situations where it is clearly the 
wrong thing to do, such as immutable classes (Item 13). 

But what about ordinary concrete classes? Traditionally, they are neither final nor designed 
and documented for subclassing, but this state of affairs is dangerous. Each time a change is 
made in such a class, there is a chance that client classes that extend the class will break. This 
is not just a theoretical problem. It is not uncommon to receive subclassing-related bug reports 
after modifying the internals of a nonfinal concrete class that was not designed and 
documented for inheritance. 

The best solution to this problem is to prohibit subclassing in classes that are not 
designed and documented to be safely subclassed.  There are two ways to prohibit 
subclassing. The easier of the two is to declare the class final. The alternative is to make all 
the constructors private or package-private and to add public static factories in place of the 
constructors. This alternative, which provides the flexibility to use subclasses internally, is 
discussed in Item 13. Either approach is acceptable. 

This advice may be somewhat controversial, as many programmers have grown accustomed 
to subclassing ordinary concrete classes to add facilities such as instrumentation, notification, 
and synchronization or to limit functionality. If a class implements some interface that 
captures its essence, such as Set, List, or Map, then you should feel no compunction about 
prohibiting subclassing. The wrapper class pattern, described in Item 14, provides a superior 
alternative to inheritance for altering the functionality. 

If a concrete class does not implement a standard interface, then you may inconvenience some 
programmers by prohibiting inheritance. If you feel that you must allow inheritance from such 
a class, one reasonable approach is to ensure that the class never invokes any of its 
overridable methods and to document this fact. In other words, eliminate the class's self-use of 
overridable methods entirely. In doing so, you'll create a class that is reasonably safe to 
subclass. Overriding a method will never affect the behavior of any other method. 

You can eliminate a class's self-use of overridable methods mechanically, without changing 
its behavior. Move the body of each overridable method to a private “helper method” and 
have each overridable method invoke its private helper method. Then replace each self-use of 
an overridable method with a direct invocation of the overridable method's private helper 
method. 

Item 16: Prefer interfaces to abstract classes 

The Java programming language provides two mechanisms for defining a type that permits 
multiple implementations: interfaces and abstract classes. The most obvious difference 
between the two mechanisms is that abstract classes are permitted to contain implementations 
for some methods while interfaces are not. A more important difference is that to implement 
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the type defined by an abstract class, a class must be a subclass of the abstract class. Any class 
that defines all of the required methods and obeys the general contract is permitted to 
implement an interface, regardless of where the class resides in the class hierarchy. Because 
Java permits only single inheritance, this restriction on abstract classes severely constrains 
their use as type definitions. 

Existing classes can be easily retrofitted to implement a new interface.  All you have to do 
is add the required methods if they don't yet exist and add an implements clause to the class 
declaration. For example, many existing classes were retrofitted to implement the 
Comparable interface when it was introduced into the platform. Existing classes cannot, in 
general, be retrofitted to extend a new abstract class. If you want to have two classes extend 
the same abstract class, you have to place the abstract class high up in the type hierarchy 
where it subclasses an ancestor of both classes. Unfortunately, this causes great collateral 
damage to the type hierarchy, forcing all descendants of the common ancestor to extend the 
new abstract class whether or not it is appropriate for them to do so. 

Interfaces are ideal for defining mixins.  A mixin is a type that a class can implement in 
addition to its “primary type” to declare that it provides some optional behavior. For example, 
Comparable is a mixin interface that allows a class to declare that its instances are ordered 
with respect to other mutually comparable objects. Such an interface is called a mixin because 
it allows the optional functionality to be “mixed in” to the type's primary functionality. 
Abstract classes cannot be used to define mixins for the same reason that they can't be 
retrofitted onto existing classes: A class cannot have more than one parent, and there is no 
reasonable place in the class hierarchy to put a mixin. 

Interfaces allow the construction of nonhierarchical type frameworks.  Type hierarchies 
are great for organizing some things, but other things don't fall neatly into a rigid hierarchy. 
For example, suppose we have an interface representing a singer and another representing a 
songwriter: 

 
public interface Singer { 
    AudioClip Sing(Song s); 
} 
public interface Songwriter { 
    Song compose(boolean hit); 
} 

In real life, some singers are also songwriters. Because we used interfaces rather than abstract 
classes to define these types, it is perfectly permissible for a single class to implement both 
Singer and Songwriter. In fact, we can define a third interface that extends both Singer and 
Songwriter and adds new methods that are appropriate to the combination: 

 
public interface SingerSongwriter extends Singer, Songwriter { 
    AudioClip strum(); 
    void actSensitive(); 
} 

You don't always need this level of flexibility, but when you do, interfaces are a lifesaver. 
The alternative is a bloated class hierarchy containing a separate class for every supported 
combination of attributes. If there are n attributes in the type system, there are 2n possible 
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combinations that you might have to support. This is what's known as a combinatorial 
explosion. Bloated class hierarchies can lead to bloated classes containing many methods that 
differ only in the type of their arguments, as there are no types in the class hierarchy to 
capture common behaviors. 

Interfaces enable safe, powerful functionality enhancements via the wrapper class idiom, 
described in Item 14. If you use abstract classes to define types, you leave the programmer 
who wants to add functionality with no alternative but to use inheritance. The resulting classes 
are less powerful and more fragile than wrapper classes. 

While interfaces are not permitted to contain method implementations, using interfaces to 
define types does not prevent you from providing implementation assistance to programmers. 
You can combine the virtues of interfaces and abstract classes by providing an abstract 
skeletal implementation class to go with each nontrivial interface that you export. The 
interface still defines the type, but the skeletal implementation takes all of the work out of 
implementing it. 

By convention, skeletal implementations are called AbstractInterface, where Interface is the 
name of the interface they implement. For example, the Collections Framework provides a 
skeletal implementation to go along with each main collection interface: 
AbstractCollection, AbstractSet, AbstractList, and AbstractMap. 

When properly designed, skeletal implementations make it very easy for programmers to 
provide their own implementations of your interfaces. For example, here's a static factory 
method containing a complete, fully functional List implementation: 

 
// List adapter for int array 
static List intArrayAsList(final int[] a) { 
    if (a == null) 
        throw new NullPointerException(); 
 
    return new AbstractList() { 
        public Object get(int i) { 
            return new Integer(a[i]); 
        } 
 
        public int size() { 
            return a.length; 
        } 
 
        public Object set(int i, Object o) { 
            int oldVal = a[i]; 
            a[i] = ((Integer)o).intValue(); 
            return new Integer(oldVal); 
       } 
    }; 
} 

When you consider all that a List implementation does for you, this example is an impressive 
demonstration of the power of skeletal implementations. Incidentally, the example is an 
Adapter [Gamma98, p.139] that allows an int array to be viewed as a list of Integer 
instances. Because of all the translation back and forth between int values and Integer 
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instances, the performance is not terribly good. Note that a static factory is provided and that 
the class is an inaccessible anonymous class (Item 18) hidden inside the static factory. 

The beauty of skeletal implementations is that they provide the implementation assistance of 
abstract classes without imposing the severe constraints that abstract classes impose when 
they serve as type definitions. For most implementors of an interface, extending the skeletal 
implementation is the obvious choice, but it is strictly optional. If a preexisting class cannot 
be made to extend the skeletal implementation, the class can always implement the interface 
manually. Furthermore, the skeletal implementation can still aid the implementor's task. The 
class implementing the interface can forward invocations of interface methods to a contained 
instance of a private inner class that extends the skeletal implementation. This technique, 
known as simulated multiple inheritance, is closely related to the wrapper class idiom 
discussed in Item 14. It provides most of the benefits of multiple inheritance, while avoiding 
the pitfalls. 

Writing a skeletal implementation is a relatively simple, if somewhat tedious, matter. First 
you must study the interface and decide which methods are the primitives in terms of which 
the others can be implemented. These primitives will be the abstract methods in your skeletal 
implementation. Then you must provide concrete implementations of all the other methods in 
the interface. For example, here's a skeletal implementation of the Map.Entry interface. As of 
this writing, this class is not included in the Java platform libraries, but it probably should be: 

// Skeletal Implementation 
public abstract class AbstractMapEntry implements Map.Entry { 
    // Primitives 
    public abstract Object getKey(); 
    public abstract Object getValue(); 
 
    // Entries in modifiable maps must override this method 
    public Object setValue(Object value) { 
        throw new UnsupportedOperationException(); 
    } 
 
    // Implements the general contract of Map.Entry.equals 
    public boolean equals(Object o) { 
        if (o == this) 
            return true; 
        if (! (o instanceof Map.Entry)) 
            return false; 
        Map.Entry arg = (Map.Entry)o; 
 
        return eq(getKey(),   arg.getKey()) && 
               eq(getValue(), arg.getValue()); 
    } 
 
    private static boolean eq(Object o1, Object o2) { 
        return (o1 == null ? o2 == null : o1.equals(o2)); 
    } 
 
    // Implements the general contract of Map.Entry.hashcode 
    public int hashCode() { 
        return 
            (getKey()   == null ? 0 :   getKey().hashCode()) ^ 
            (getValue() == null ? 0 : getValue().hashCode()); 
    } 
} 
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Because skeletal implementations are designed for inheritance, you should follow all of the 
design and documentation guidelines in Item 15. For brevity's sake, the documentation 
comments were omitted from the previous example, but good documentation is absolutely 
essential for skeletal implementations 

Using abstract classes to define types that permit multiple implementations has one great 
advantage over using interfaces: It is far easier to evolve an abstract class than it is to 
evolve an interface. If, in a subsequent release, you want to add a new method to an abstract 
class, you can always add a concrete method containing a reasonable default implementation. 
All existing implementations of the abstract class will then provide the new method. This does 
not work for interfaces. 

It is, generally speaking, impossible to add a method to a public interface without breaking all 
existing programs that use the interface. Classes that previously implemented the interface 
will be missing the new method and won't compile anymore. You could limit the damage 
somewhat by adding the new method to the skeletal implementation at the same time as you 
added it to the interface, but this really doesn't solve the problem. Any implementation that 
didn't inherit from the skeletal implementation would still be broken. 

Public interfaces, therefore, must be designed carefully. Once an interface is released and 
widely implemented, it is almost impossible to change it. You really must get it right the first 
time. If an interface contains a minor flaw, it will irritate you and its users forever. If an 
interface is severely deficient, it can doom the API. The best thing to do when releasing a new 
interface is to have as many programmers as possible implement the interface in as many 
ways as possible before the interface is “frozen.” This will allow you to discover any flaws 
while you can still correct them. 

To summarize, an interface is generally the best way to define a type that permits multiple 
implementations. An exception to this rule is the case where ease of evolution is deemed more 
important than flexibility and power. Under these circumstances, you should use an abstract 
class to define the type, but only if you understand and can accept the limitations. If you 
export a nontrivial interface, you should strongly consider providing a skeletal 
implementation to go with it. Finally, you should design all of your public interfaces with the 
utmost care and test them thoroughly by writing multiple implementations 

Item 17: Use interfaces only to define types 

When a class implements an interface, the interface serves as a type that can be used to refer 
to instances of the class. That a class implements an interface should therefore say something 
about what a client can do with instances of the class. It is inappropriate to define an interface 
for any other purpose. 

One kind of interface that fails this test is the so-calledconstant interface. Such an interface 
contains no methods; it consists solely of static final fields, each exporting a constant. Classes 
using these constants implement the interface to avoid the need to qualify constant names 
with a class name. Here is an example: 
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 // Constant interface pattern - do not use! 
public interface PhysicalConstants { 
    // Avogadro's number (1/mol) 
    static final double AVOGADROS_NUMBER   = 6.02214199e23; 
 
    // Boltzmann constant (J/K) 
    static final double BOLTZMANN_CONSTANT = 1.3806503e-23; 
 
    // Mass of the electron (kg) 
    static final double ELECTRON_MASS      = 9.10938188e-31; 
} 

The constant interface pattern is a poor use of interfaces.  That a class uses some constants 
internally is an implementation detail. Implementing a constant interface causes this 
implementation detail to leak into the class's exported API. It is of no consequence to the 
users of a class that the class implements a constant interface. In fact, it may even confuse 
them. Worse, it represents a commitment: if in a future release the class is modified so that it 
no longer needs to use the constants, it still must implement the interface to ensure binary 
compatibility. If a nonfinal class implements a constant interface, all of its subclasses will 
have their namespaces polluted by the constants in the interface. 

There are several constant interfaces in the java platform libraries, such as 
java.io.ObjectStreamConstants. These interfaces should be regarded as anomalies and 
should not be emulated. 

If you want to export constants, there are several reasonable choices. If the constants are 
strongly tied to an existing class or interface, you should add them to the class or interface. 
For example, all of the numerical wrapper classes in the Java platform libraries, such as 
Integer and Float, export MIN_VALUE and MAX_VALUE constants. If the constants are best 
viewed as members of an enumerated type, you should export them with a typesafe enum 
class (Item 21). Otherwise, you should export the constants with a noninstantiable utility class 
(Item 3). Here is a utility class version of the PhysicalConstants example above: 

 
// Constant utility class 
public class PhysicalConstants { 
  private PhysicalConstants() { }  // Prevents instantiation 
 
  public static final double AVOGADROS_NUMBER   = 6.02214199e23; 
  public static final double BOLTZMANN_CONSTANT = 1.3806503e-23; 
  public static final double ELECTRON_MASS     = 9.10938188e-31; 
} 

While the utility class version of PhysicalConstants does require clients to qualify constant 
names with a class name, this is a small price to pay for sensible APIs. It is possible that the 
language may eventually allow the importation of static fields. In the meantime, you can 
minimize the need for excessive typing by storing frequently used constants in local variables 
or private static fields, for example: 

 
private static final double PI = Math.PI; 

In summary, interfaces should be used only to define types. They should not be used to export 
constants. 
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Item 18: Favor static member classes over nonstatic 

A nested class is a class defined within another class. A nested classes should exist only to 
serve its enclosing class. If a nested class would be useful in some other context, then it 
should be a top-level class. There are four kinds of nested classes: static member classes, 
nonstatic member classes, anonymous classes, and local classes. All but the first kind are 
known as inner classes. This item tells you when to use which kind of nested class and why. 

A static member class is the simplest kind of nested class. It is best thought of as an ordinary 
class that happens to be declared inside another class and has access to all of the enclosing 
class's members, even those declared private. A static member class is a static member of its 
enclosing class and obeys the same accessibility rules as other static members. If it is declared 
private, it is accessible only within the enclosing class, and so forth. 

One common use of a static member class is as a public auxiliary class, useful only in 
conjunction with its outer class. For example, consider a typesafe enum describing the 
operations supported by a calculator (Item 21). The Operation class should be a public static 
member class of the Calculator class. Clients of the Calculator class could then refer to 
operations using names like Calculator.Operation.PLUS and 
Calculator.Operation.MINUS. This use is demonstrated later in this item. 

Syntactically, the only difference between static and nonstatic member classes is that static 
member classes have the modifier static in their declarations. Despite the syntactic 
similarity, these two kinds of nested classes are very different. Each instance of a nonstatic 
member class is implicitly associated with an enclosing instance of its containing class. 
Within instance methods of a nonstatic member class, it is possible to invoke methods on the 
enclosing instance. Given a reference to an instance of a nonstatic member class, it is possible 
to obtain a reference to the enclosing instance. If an instance of a nested class can exist in 
isolation from an instance of its enclosing class, then the nested class cannot be a nonstatic 
member class: It is impossible to create an instance of a nonstatic member class without an 
enclosing instance. 

The association between a nonstatic member class instance and its enclosing instance is 
established when the former is created; it cannot be modified thereafter. Normally, 
the association is established automatically by invoking a nonstatic member class constructor 
from within an instance method of the enclosing class. It is possible, although rare, to 
establish the association manually using the expression enclosingInstance.new 
MemberClass(args). As you would expect, the association takes up space in the nonstatic 
member class instance and adds time to its construction. 

One common use of a nonstatic member class is to define an Adapter [Gamma98, p.139] that 
allows an instance of the outer class to be viewed as an instance of some unrelated class. For 
example, implementations of the Map interface typically use nonstatic member classes to 
implement their collection views, which are returned by Map's keySet, entrySet, and values 
methods. Similarly, implementations of the collection interfaces, such as Set and List, 
typically use nonstatic member classes to implement their iterators: 
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// Typical use of a nonstatic member class 
public class MySet extends AbstractSet { 
    ... // Bulk of the class omitted 
 
    public Iterator iterator() { 
        return new MyIterator(); 
    } 
 
    private class MyIterator implements Iterator { 
        ... 
    } 
} 

If you declare a member class that does not require access to an enclosing instance, 
remember to put the static modifier in the declaration, making it a static rather than 
a nonstatic member class. If you omit the static modifier, each instance will contain 
an extraneous reference to the enclosing object. Maintaining this reference costs time and 
space with no corresponding benefits. Should you ever need to allocate an instance without 
an enclosing instance, you'll be unable to do so, as nonstatic member class instances are 
required to have an enclosing instance. 

A common use of private static member classes is to represent components of the object 
represented by their enclosing class. For example, consider a Map instance, which associates 
keys with values. Map instances typically have an internal Entry object for each key-value 
pair in the map. While each entry is associated with a map, the methods on an entry (getKey, 
getValue, and setValue) do not need access to the map. Therefore it would be wasteful to 
use a nonstatic member class to represent entries; a private static member class is best. If you 
accidentally omit the static modifier in the entry declaration, the map will still work, but 
each entry will contain a superfluous reference to the map, which wastes space and time. 

It is doubly important to choose correctly between a static and nonstatic member class if the 
class in question is a public or protected member of an exported class. In this case, the 
member class is an exported API element and may not be changed from a nonstatic to a static 
member class in a subsequent release without violating binary compatibility. 

Anonymous classes are unlike anything else in the Java programming language. As you 
would expect, an anonymous class has no name. It is not a member of its enclosing class. 
Rather than being declared along with other members, it is simultaneously declared and 
instantiated at the point of use. Anonymous classes are permitted at any point in the code 
where an expression is legal. Anonymous classes behave like static or nonstatic member 
classes depending on where they occur: They have enclosing instances if they occur in a 
nonstatic context. 

There are several limitations on the applicability of anonymous classes. Because they are 
simultaneously declared and instantiated, an anonymous class may be used only if it is to be 
instantiated at a single point in the code. Because anonymous classes have no name, they may 
be used only if there is no need to refer to them after they are instantiated. Anonymous classes 
typically implement only methods in their interface or superclass. They do not declare any 
new methods, as there is no nameable type to access new methods. Because anonymous 
classes occur in the midst of expressions, they should be very short, perhaps twenty lines or 
less. Longer anonymous classes would harm the readability of the program. 
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One common use of an anonymous class is to create a function object, such as a Comparator 
instance. For example, the following method invocation sorts an array of strings according to 
their length: 

 
// Typical use of an anonymous class 
Arrays.sort(args, new Comparator() { 
    public int compare(Object o1, Object o2) { 
        return  ((String)o1).length() - ((String)o2).length(); 
    } 
}); 

Another common use of an anonymous class is to create a process object, such as a Thread, 
Runnable, or TimerTask instance. A third common use is within a static factory method (see 
the intArrayAsList method in Item 16). A fourth common use is in the public static final 
field initializers of sophisticated typesafe enums that require a separate subclass for each 
instance (see the Operation class in Item 21). If the Operation class is a static member class 
of Calculator, as recommended earlier, then the individual Operation constants are doubly 
nested classes: 

 
// Typical use of a public static member class 
public class Calculator { 
   public static abstract class Operation { 
      private final String name; 
 
      Operation(String name)   { this.name = name; } 
 
      public String toString() { return this.name; } 
 
      // Perform arithmetic op represented by this constant 
      abstract double eval(double x, double y); 
 
      // Doubly nested anonymous classes 
      public static final Operation PLUS = new Operation("+") { 
         double eval(double x, double y) { return x + y; } 
      }; 
      public static final Operation MINUS = new Operation("-") { 
         double eval(double x, double y) { return x - y; } 
      }; 
      public static final Operation TIMES = new Operation("*") { 
         double eval(double x, double y) { return x * y; } 
      }; 
      public static final Operation DIVIDE = new Operation("/") { 
         double eval(double x, double y) { return x / y; } 
      }; 
   } 
 
   // Return the results of the specified calculation 
   public double calculate(double x, Operation op, double y) { 
      return op.eval(x, y); 
  } 
} 

Local classes are probably the least frequently used of the four kinds of nested classes. A local 
class may be declared anywhere that a local variable may be declared and obeys the same 
scoping rules. Local classes have some attributes in common with each of the other three 
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kinds of nested classes. Like member classes, they have names and may be used repeatedly. 
Like anonymous classes, they have enclosing instances if and only if they are used in a 
nonstatic context. Like anonymous classes, they should be short so as not to harm the 
readability of the enclosing method or initializer. 

To recap, there are four different kinds of nested classes, and each has its place. If a nested 
class needs to be visible outside of a single method or is too long to fit comfortably inside a 
method, use a member class. If each instance of the member class needs a reference to its 
enclosing instance, make it nonstatic; otherwise make it static. Assuming the class belongs 
inside a method, if you need to create instances from only one location and there is a 
preexisting type that characterizes the class, make it an anonymous class; otherwise, make it a 
local class. 
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Chapter 5. Substitutes for C Constructs 
The Java programming language shares many similarities with the C programming language, 
but several C constructs have been omitted. In most cases, it's obvious why a C construct 
wasz omitted and how to make do without it. This chapter suggests replacements for several 
omitted C constructs whose replacements are not so obvious. 

The common thread that connects the items in this chapter is that all of the omitted constructs 
are data-oriented rather than object-oriented. The Java programming language provides 
a powerful type system, and the suggested replacements take full advantage of that type 
system to deliver a higher quality abstraction than the C constructs they replace. 

Even if you choose to skip this chapter, it's probably worth reading Item 21, which discusses 
the typesafe enum pattern, a replacement for C's enum construct. This pattern is not widely 
known at the time of this writing, and it has several advantages over the methods currently in 
common use. 

Item 19: Replace structures with classes 

The C struct construct was omitted from the Java programming language because a class 
does everything a structure does and more. A structure merely groups multiple data fields into 
a single object; a class associates operations with the resulting object and allows the data 
fields to be hidden from users of the object. In other words, a class can encapsulate its data 
into an object that is accessed solely by its methods, allowing the implementor the freedom to 
change the representation over time (Item 12). 

Upon first exposure to the Java programming language, some C programmers believe that 
classes are too heavyweight to replace structures under some circumstances, but this is not 
the case. Degenerate classes consisting solely of data fields are loosely equivalent to C 
structures: 

 
// Degenerate classes like this should not be public! 
class Point { 
    public float x; 
    public float y; 
} 

Because such classes are accessed by their data fields, they do not offer the benefits of 
encapsulation. You cannot change the representation of such a class without changing its API, 
you cannot enforce any invariants, and you cannot take any auxiliary action when a field is 
modified. Hard-line object-oriented programmers feel that such classes are anathema and 
should always be replaced by classes with private fields and public accessor methods: 
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// Encapsulated structure class 
class Point { 
    private float x; 
    private float y; 
 
    public Point(float x, float y) { 
        this.x = x; 
        this.y = y; 
    } 
 
    public float getX() { return x; } 
    public float getY() { return y; } 
 
    public void setX(float x) { this.x = x; } 
    public void setY(float y) { this.y = y; } 
} 

Certainly, the hard-liners are correct when it comes to public classes: If a class is accessible 
outside the confines of its package, the prudent programmer will provide accessor methods to 
preserve the flexibility to change the class's internal representation. If a public class were to 
expose its data fields, all hope of changing the representation would be lost, as client code for 
public classes can be distributed all over the known universe. 

If, however, a class is package-private, or it is a private nested class, there is nothing 
inherently wrong with directly exposing its data fields—assuming they really do describe the 
abstraction provided by the class. This approach generates less visual clutter than the access 
method approach, both in the class definition and in the client code that uses the class. While 
the client code is tied to the internal representation of the class, this code is restricted to the 
package that contains the class. In the unlikely event that a change in representation becomes 
desirable, it is possible to effect the change without touching any code outside the package. In 
the case of a private nested class, the scope of the change is further restricted to the enclosing 
class. 

Several classes in the Java platform libraries violate the advice that public classes should not 
expose fields directly. Prominent examples include the Point and Dimension classes in the 
java.awt package. Rather than examples to be emulated, these classes should be regarded as 
cautionary tales. As described in Item 37, the decision to expose the internals of the 
Dimension class resulted in a serious performance problem that could not be solved without 
affecting clients. 

Item 20: Replace unions with class hierarchies 

The C union construct is most frequently used to define structures capable of holding more 
than one type of data. Such a structure typically contains at least two fields: a union and a tag. 
The tag is just an ordinary field used to indicate which of the possible types is held by the 
union. The tag is generally of some enum type. A structure containing a union and a tag is 
sometimes called a discriminated union. 

In the C example below, the shape_t type is a discriminated union that can be used to 
represent either a rectangle or a circle. The area function takes a pointer to a shape_t 
structure and returns its area, or -1.0, if the structure is invalid: 
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/* Discriminated union */ 
#include "math.h" 
typedef enum {RECTANGLE, CIRCLE} shapeType_t; 
 
typedef struct { 
    double length; 
    double width; 
} rectangleDimensions_t; 
 
typedef struct { 
    double radius; 
} circleDimensions_t; 
 
typedef struct { 
    shapeType_t tag; 
    union { 
        rectangleDimensions_t rectangle; 
        circleDimensions_t    circle; 
    } dimensions; 
} shape_t; 
 
double area(shape_t *shape) { 
    switch(shape->tag) { 
      case RECTANGLE: { 
        double length = shape->dimensions.rectangle.length; 
        double width  = shape->dimensions.rectangle.width; 
        return length * width; 
      } 
      case CIRCLE: { 
        double r = shape->dimensions.circle.radius; 
        return M_PI * (r*r); 
      } 
      default: return -1.0; /* Invalid tag */ 
    } 
} 

The designers of the Java programming language chose to omit the union construct because 
there is a much better mechanism for defining a single data type capable of representing 
objects of various types: subtyping. A discriminated union is really just a pallid imitation of a 
class hierarchy. 

To transform a discriminated union into a class hierarchy, define an abstract class containing 
an abstract method for each operation whose behavior depends on the value of the tag. In the 
earlier example, there is only one such operation, area. This abstract class is the root of the 
class hierarchy. If there are any operations whose behavior does not depend on the value of 
the tag, turn these operations into concrete methods in the root class. Similarly, if there are 
any data fields in the discriminated union besides the tag and the union, these fields represent 
data common to all types and should be added to the root class. There are no such type-
independent operations or data fields in the example. 

Next, define a concrete subclass of the root class for each type that can be represented by the 
discriminated union. In the earlier example, the types are circle and rectangle. Include in each 
subclass the data fields particular to its type. In the example, radius is particular to circle, and 
length and width are particular to rectangle. Also include in each subclass the appropriate 
implementation of each abstract method in the root class. Here is the class hierarchy 
corresponding to the discriminated union example: 
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abstract class Shape { 
    abstract double area(); 
} 
 
class Circle extends Shape { 
    final double radius; 
 
    Circle(double radius) { this.radius = radius; } 
 
    double area() { return Math.PI * radius*radius; } 
} 
 
class Rectangle extends Shape { 
    final double length; 
    final double width; 
 
    Rectangle(double length, double width) { 
        this.length = length; 
        this.width  = width; 
   } 
   double area() { return length * width; } 
} 

A class hierarchy has numerous advantages over a discriminated union. Chief among these is 
that the class hierarchy provides type safety. In the example, every Shape instance is either a 
valid Circle or a valid Rectangle. It is a simple matter to generate a shape_t structure that 
is complete garbage, as the association between the tag and the union is not enforced by the 
language. If the tag indicates that the shape_t represents a rectangle but the union has been 
set for a circle, all bets are off. Even if a discriminated union has been initialized properly, it 
is possible to pass it to a function that is inappropriate for its tag value. 

A second advantage of the class hierarchy is that code is simple and clear. The discriminated 
union is cluttered with boilerplate: declaring the enum type, declaring the tag field, switching 
on the tag field, dealing with unexpected tag values, and the like. The discriminated union 
code is made even less readable by the fact that the operations for the various types are 
intermingled rather than segregated by type. 

A third advantage of the class hierarchy is that it is easily extensible, even by multiple parties 
working independently. To extend a class hierarchy, simply add a new subclass. If you forget 
to override one of the abstract methods in the superclass, the compiler will tell you in no 
uncertain terms. To extend a discriminated union, you need access to the source code. You 
must add a new value to the enum type, as well as a new case to the switch statement in each 
operation on the discriminated union. Finally, you must recompile. If you forget to provide a 
new case for some method, you won't find out until run time, and then only if you're careful to 
check for unrecognized tag values and generate an appropriate error message. 

A fourth advantage of the class hierarchy is that it can be made to reflect natural hierarchical 
relationships among types, to allow for increased flexibility and better compile-time type 
checking. Suppose the discriminated union in the original example also allowed for squares. 
The class hierarchy could be made to reflect the fact a square is a special kind of rectangle 
(assuming both are immutable): 
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class Square extends Rectangle { 
    Square(double side) { 
        super(side, side); 
    } 
 
    double side() { 
        return length; // or equivalently, width 
    } 
} 

The class hierarchy in this example is not the only one that could have been written to replace 
the discriminated union. The hierarchy embodies several design decisions worthy of note. The 
classes in the hierarchy, with the exception of Square, are accessed by their fields rather than 
by accessor methods. This was done for brevity and would be unacceptable if the classes were 
public (Item 19). The classes are immutable, which is not always appropriate, but is generally 
a good thing (Item 13). 

Since the Java programming language does not provide the union construct, you might think 
there's no danger of implementing a discriminated union, but it is possible to write code with 
many of the same disadvantages. Whenever you're tempted to write a class with an explicit 
tag field, think about whether the tag could be eliminated and the class replaced by a class 
hierarchy. 

Another use of C's union construct, completely unrelated to discriminated unions, involves 
looking at the internal representation of a piece of data, intentionally violating the type 
system. This usage is demonstrated by the following C code fragment, which prints the 
machine-specific hex representation of a float: 

 
union { 
    float f; 
    int   bits; 
} sleaze; 
 
sleaze.f = 6.699e-41;    /* Put data in one field of union... */ 
printf("%x\n", sleaze.bits); /* ...and read it out the other. */ 

While it can be useful, especially for system programming, this nonportable usage has no 
counterpart in the Java programming language. In fact, it is antithetical to the spirit of the 
language, which guarantees type safety and goes to great lengths to insulate programmers 
from machine-specific internal representations. 

The java.lang package does contain methods to translate floating point numbers into bit 
representations, but these methods are defined in terms of a precisely specified bit 
representation to ensure portability. The code fragment that follows, which is loosely 
equivalent to the earlier C fragment, is guaranteed to print the same result, no matter where 
it's run: 

 
System.out.println( 
    Integer.toHexString(Float.floatToIntBits(6.699e-41f))); 
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Item 21: Replace enum constructs with classes 

The C enum construct was omitted from the Java programming language. Nominally, this 
construct defines an enumerated type: a type whose legal values consist of a fixed set of 
constants. Unfortunately, the enum construct doesn't do a very good job of defining 
enumerated types. It just defines a set of named integer constants, providing nothing in the 
way of type safety and little in the way of convenience. Not only is the following legal C: 

 
typedef enum {FUJI, PIPPIN, GRANNY_SMITH} apple_t; 
typedef enum {NAVEL, TEMPLE, BLOOD} orange_t; 
orange_t myFavorite = PIPPIN;    /* Mixing apples and oranges */ 

but so is this atrocity: 

 
orange_t x = (FUJI - PIPPIN)/TEMPLE;    /* Applesauce! */ 

The enum construct does not establish a name space for the constants it generates. Therefore 
the following declaration, which reuses one of the names, conflicts with the orange_t 
declaration: 

 
typedef enum {BLOOD, SWEAT, TEARS} fluid_t; 

Types defined with the enum construct are brittle. Adding constants to such a type without 
recompiling its clients causes unpredictable behavior, unless care is taken to preserve all of 
the preexisting constant values. Multiple parties cannot add constants to such a type 
independently, as their new enumeration constants are likely to conflict. The enum construct 
provides no easy way to translate enumeration constants into printable strings or to enumerate 
over the constants in a type. 

Unfortunately, the most commonly used pattern for enumerated types in the Java 
programming language, shown here, shares the shortcomings of the C enum construct: 

 
// The int enum pattern - problematic!! 
public class PlayingCard { 
    public static final int SUIT_CLUBS    = 0; 
    public static final int SUIT_DIAMONDS = 1; 
    public static final int SUIT_HEARTS   = 2; 
    public static final int SUIT_SPADES   = 3; 
    ... 
} 

You may encounter a variant of this pattern in which String constants are used in place of 
int constants. This variant should never be used. While it does provide printable strings for 
its constants, it can lead to performance problems because it relies on string comparisons. 
Furthermore, it can lead naive users to hard-code string constants into client code instead of 
using the appropriate field names. If such a hard-coded string constant contains a 
typographical error, the error will escape detection at compile time and result in bugs at run 
time. 
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Luckily, the Java programming language presents an alternative that avoids all the 
shortcomings of the common int and String patterns and provides many added benefits. It is 
called thetypesafe enum pattern. Unfortunately, it is not yet widely known. The basic idea is 
simple: Define a class representing a single element of the enumerated type, and don't provide 
any public constructors. Instead, provide public static final fields, one for each constant in the 
enumerated type. Here's how the pattern looks in its simplest form: 

 
// The typesafe enum pattern 
public class Suit { 
    private final String name; 
 
    private Suit(String name) { this.name = name; } 
 
    public String toString()  { return name; } 
 
    public static final Suit CLUBS    = new Suit("clubs"); 
    public static final Suit DIAMONDS = new Suit("diamonds"); 
    public static final Suit HEARTS   = new Suit("hearts"); 
    public static final Suit SPADES   = new Suit("spades"); 
} 

Because there is no way for clients to create objects of the class or to extend it, there will 
never be any objects of the type besides those exported via the public static final fields. Even 
though the class is not declared final, there is no way to extend it: Subclass constructors must 
invoke a superclass constructor, and no such constructor is accessible. 

As its name implies, the typesafe enum pattern provides compile-time type safety. If you 
declare a method with a parameter of type Suit, you are guaranteed that any non-null object 
reference passed in represents one of the four valid suits. Any attempt to pass an incorrectly 
typed object will be caught at compile time, as will any attempt to assign an expression of one 
enumerated type to a variable of another. Multiple typesafe enum classes with identically 
named enumeration constants coexist peacefully because each class has its own name space. 

Constants may be added to a typesafe enum class without recompiling its clients because the 
public static object reference fields containing the enumeration constants provide a layer of 
insulation between the client and the enum class. The constants themselves are never 
compiled into clients as they are in the more common int pattern and its String variant. 

Because typesafe enums are full-fledged classes, you can override the toString method as 
shown earlier, allowing values to be translated into printable strings. You can, if you desire, 
go one step further and internationalize typesafe enums by standard means. Note that string 
names are used only by the toString method; they are not used for equality comparisons, as 
the equals implementation, which is inherited from Object, performs a reference identity 
comparison. 

More generally, you can augment a typesafe enum class with any method that seems 
appropriate. Our Suit class, for example, might benefit from the addition of a method that 
returns the color of the suit or one that returns an image representing the suit. A class can start 
life as a simple typesafe enum and evolve over time into a full-featured abstraction. 
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Because arbitrary methods can be added to typesafe enum classes, they can be made to 
implement any interface. For example, suppose that you want Suit to implement Comparable 
so clients can sort bridge hands by suit. Here's a slight variant on the original pattern that 
accomplishes this feat. A static variable, nextOrdinal, is used to assign an ordinal number to 
each instance as it is created. These ordinals are used by the compareTo method to order 
instances: 

 
// Ordinal-based typesafe enum 
public class Suit implements Comparable { 
    private final String name; 
 
    // Ordinal of next suit to be created 
    private static int nextOrdinal = 0; 
 
    // Assign an ordinal to this suit 
    private final int ordinal = nextOrdinal++; 
 
    private Suit(String name) { this.name = name; } 
 
    public String toString()  { return name; } 
 
    public int compareTo(Object o) { 
        return ordinal - ((Suit)o).ordinal; 
    } 
        public static final Suit CLUBS    = new Suit("clubs"); 
        public static final Suit DIAMONDS = new Suit("diamonds"); 
        public static final Suit HEARTS   = new Suit("hearts"); 
        public static final Suit SPADES   = new Suit("spades"); 
    } 
 

Because typesafe enum constants are objects, you can put them into collections. For example, 
suppose you want the Suit class to export an immutable list of the suits in standard order. 
Merely add these two field declarations to the class: 

 
private static final Suit[] PRIVATE_VALUES = 
   { CLUBS, DIAMONDS, HEARTS, SPADES }; 
public static final List VALUES = 
   Collections.unmodifiableList(Arrays.asList(PRIVATE_VALUES)); 

Unlike the simplest form of the typesafe enum pattern, classes of the ordinal-based form 
above can be made serializable (Chapter 10) with a little care. It is not sufficient merely to 
add implements Serializable to the class declaration. You must also provide a 
readResolve method (Item 57): 

 
private Object readResolve() throws ObjectStreamException { 
    return PRIVATE_VALUES[ordinal]; // Canonicalize 
} 

This method, which is invoked automatically by the serialization system, prevents duplicate 
constants from coexisting as a result of deserialization. This maintains the guarantee that only 
a single object represents each enum constant, avoiding the need to override Object.equals. 
Without this guarantee, Object.equals would report a false negative when presented with 
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two equal but distinct enumeration constants. Note that the readResolve method refers to the 
PRIVATE_VALUES array, so you must declare this array even if you choose not to export 
VALUES. Note also that the name field is not used by the readResolve method, so it can and 
should be made transient. 

The resulting class is somewhat brittle; constructors for any new values must appear after 
those of all existing values, to ensure that previously serialized instances do not change their 
value when they're deserialized. This is so because the serialized form (Item 55) of an 
enumeration constant consists solely of its ordinal. If the enumeration constant pertaining to 
an ordinal changes, a serialized constant with that ordinal will take on the new value when it 
is deserialized. 

There may be one or more pieces of behavior associated with each constant that are used only 
from within the package containing the typesafe enum class. Such behaviors are best 
implemented as package-private methods on the class. Each enum constant then carries with it 
a hidden collection of behaviors that allows the package containing the enumerated type to 
react appropriately when presented with the constant. 

If a typesafe enum class has methods whose behavior varies significantly from one class 
constant to another, you should use a separate private class or anonymous inner class for each 
constant. This allows each constant to have its own implementation of each such method and 
automatically invokes the correct implementation. The alternative is to structure each such 
method as a multiway branch that behaves differently depending on the constant on which it's 
invoked. This alternative is ugly, error prone, and likely to provide performance that is 
inferior to that of the virtual machine's automatic method dispatching. 

The two techniques described in the previous paragraphs are illustrated in the typesafe enum 
class that follows. The class, Operation, represents an operation performed by a basic four-
function calculator. Outside of the package in which the class is defined, all you can do with 
an Operation constant is to invoke the Object methods (toString, hashCode, equals, and 
so forth). Inside the package, however, you can perform the arithmetic operation represented 
by the constant. Presumably, the package would export some higher-level calculator object 
that exported one or more methods that took an Operation constant as a parameter. Note that 
Operation itself is an abstract class, containing a single package-private abstract method, 
eval, that performs the appropriate arithmetic operation. An anonymous inner class is defined 
for each constant so that each constant can define its own version of the eval method: 

 
// Typesafe enum with behaviors attached to constants 
public abstract class Operation { 
    private final String name; 
 
    Operation(String name)   { this.name = name; } 
 
    public String toString() { return this.name; } 
 
    // Perform arithmetic operation represented by this constant 
    abstract double eval(double x, double y); 
 
    public static final Operation PLUS = new Operation("+") { 
        double eval(double x, double y) { return x + y; } 
    }; 
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    public static final Operation MINUS = new Operation("-") { 
        double eval(double x, double y) { return x - y; } 
    }; 
        public static final Operation TIMES = new Operation("*") { 
            double eval(double x, double y) { return x * y; } 
        }; 
        public static final Operation DIVIDED_BY = 
            new Operation("/") { 
                double eval(double x, double y) { return x / y; } 
        }; 
    } 

Typesafe enums are, generally speaking, comparable in performance to int enumeration 
constants. Two distinct instances of a typesafe enum class can never represent the same value, 
so reference identity comparisons, which are fast, are used to check for logical equality. 
Clients of a typesafe enum class can use the == operator instead of the equals method; the 
results are guaranteed to be identical, and the == operator may be even faster. 

If a typesafe enum class is generally useful, it should be a top-level class; if its use is tied to 
a specific top-level class, it should be a static member class of that top-level class (Item 18). 
For example, the java.math.BigDecimal class contains a collection of int enumeration 
constants representing rounding modes for decimal fractions. These rounding modes provide 
a useful abstraction that is not fundamentally tied to the BigDecimal class; they would been 
better implemented as a freestanding java.math.RoundingMode class. This would have 
encouraged any programmer who needed rounding modes to reuse those rounding modes, 
leading to increased consistency across APIs. 

The basic typesafe enum pattern, as exemplified by both Suit implementations shown earlier, 
is fixed: It is impossible for users to add new elements to the enumerated type, as its class has 
no user-accessible constructors. This makes the class effectively final, whether or not it is 
declared with the final access modifier. This is normally what you want, but occasionally 
you may want to make a typesafe enum class extensible. This might be the case, for example, 
if you used a typesafe enum to represent image encoding formats and you wanted third parties 
to be able to add support for new formats. 

To make a typesafe enum extensible, merely provide a protected constructor. Others can then 
extend the class and add new constants to their subclasses. You needn't worry about 
enumeration constant conflicts as you would if you were using the int enum pattern. 
The extensible variant of the typesafe enum pattern takes advantage of the package 
namespace to create a “magically administered” namespace for the extensible enumeration. 
Multiple organizations can extend the enumeration without knowledge of one another, and 
their extensions will never conflict. 

Merely adding an element to an extensible enumerated type does not ensure that the new 
element is fully supported: Methods that take an element of the enumerated type must contend 
with the possibility of being passed an element unknown to the programmer. Multiway 
branches on fixed enumerated types are questionable; on extensible enumerated types they're 
lethal, as they won't magically grow a branch each time a programmer extends the type. 

One way to cope with this problem is to outfit the typesafe enum class with all of the methods 
necessary to describe the behavior of a constant of the class. Methods that are not useful to 
clients of the class should be protected to hide them from clients while allowing subclasses to 
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override them. If such a method has no reasonable default implementation, it should be 
abstract as well as protected. 

It is a good idea for extensible typesafe enum classes to override the equals and hashCode 
methods with final methods that invoke the Object methods. This ensures that no subclass 
accidentally overrides these methods, maintaining the guarantee that all equal objects of the 
enumerated type are also identical (a.equals(b) if and only if a==b): 

 
//Override-prevention methods 
public final boolean equals(Object that) { 
    return super.equals(that); 
} 
 
public final int hashCode() { 
    return super.hashCode(); 
} 

Note that the extensible variant is not compatible with the comparable variant; if you tried to 
combine them, the ordering among the elements of the subclasses would be a function of the 
order in which the subclasses were initialized, which could vary from program to program and 
run to run. 

The extensible variant of the typesafe enum pattern is compatible with the serializable variant, 
but combining these variants demands some care. Each subclass must assign its own ordinals 
and provide its own readResolve method. In essence, each class is responsible for serializing 
and deserializing its own instances. To make this concrete, here is a version of the Operation 
class that has been modified to be both extensible and serializable: 

 
// Serializable, extensible typesafe enum 
public abstract class Operation implements Serializable { 
    private final transient String name; 
    protected Operation(String name) { this.name = name; } 
 
    public static Operation PLUS = new Operation("+") { 
        protected double eval(double x, double y) { return x+y; } 
    }; 
    public static Operation MINUS = new Operation("-") { 
        protected double eval(double x, double y) { return x-y; } 
    }; 
    public static Operation TIMES = new Operation("*") { 
        protected double eval(double x, double y) { return x*y; } 
    }; 
    public static Operation DIVIDE = new Operation("/") { 
        protected double eval(double x, double y) { return x/y; } 
    }; 
 
    // Perform arithmetic operation represented by this constant 
    protected abstract double eval(double x, double y); 
 
    public String toString() { return this.name; } 
    // Prevent subclasses from overriding Object.equals 
    public final boolean equals(Object that) { 
        return super.equals(that); 
    } 
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    public final int hashCode() { 
        return super.hashCode(); 
    } 
 
    // The 4 declarations below are necessary for serialization 
    private static int nextOrdinal = 0; 
    private final int ordinal = nextOrdinal++; 
    private static final Operation[] VALUES = 
        { PLUS, MINUS, TIMES, DIVIDE }; 
    Object readResolve() throws ObjectStreamException { 
        return VALUES[ordinal];  // Canonicalize 
    } 
} 

Here is a subclass of Operation that adds logarithm and exponential operations. This 
subclass could exist outside of the package containing the revised Operation class. It could be 
public, and it could itself be extensible. Multiple independently written subclasses can coexist 
peacefully: 

 
// Subclass of extensible, serializable typesafe enum 
abstract class ExtendedOperation extends Operation { 
    ExtendedOperation(String name) { super(name); } 
 
    public static Operation LOG = new ExtendedOperation("log") { 
        protected double eval(double x, double y) { 
            return Math.log(y) / Math.log(x); 
        } 
    }; 
    public static Operation EXP = new ExtendedOperation("exp") { 
        protected double eval(double x, double y) { 
            return Math.pow(x, y); 
        } 
    }; 
 
   // The 4 declarations below are necessary for serialization 
   private static int nextOrdinal = 0; 
   private final int ordinal = nextOrdinal++; 
   private static final Operation[] VALUES = { LOG, EXP }; 
   Object readResolve() throws ObjectStreamException { 
       return VALUES[ordinal];  // Canonicalize 
   } 
} 

Note that the readResolve methods in the classes just shown are package-private rather than 
private. This is necessary because the instances of Operation and ExtendedOperation are, 
in fact, instances of anonymous subclasses, so private readResolve methods would have no 
effect (Item 57). 

The typesafe enum pattern has few disadvantages when compared to the int pattern. Perhaps 
the only serious disadvantage is that it is more awkward to aggregate typesafe enum constants 
into sets. With int-based enums, this is traditionally done by choosing enumeration constant 
values, each of which is a distinct positive power of two, and representing a set as the bitwise 
OR of the relevant constants: 
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// Bit-flag variant of int enum pattern 
public static final int SUIT_CLUBS    = 1; 
public static final int SUIT_DIAMONDS = 2; 
public static final int SUIT_HEARTS   = 4; 
public static final int SUIT_SPADES   = 8; 
 
public static final int SUIT_BLACK = SUIT_CLUBS | SUIT_SPADES; 

Representing sets of enumerated type constants in this fashion is concise and extremely fast. 
For sets of typesafe enum constants, you can use a general purpose set implementation from 
the Collections Framework, but this is neither as concise nor as fast: 

 
Set blackSuits = new HashSet(); 
blackSuits.add(Suit.CLUBS); 
blackSuits.add(Suit.SPADES); 

While sets of typesafe enum constants probably cannot be made as concise or as fast as sets of 
int enum constants, it is possible to reduce the disparity by providing a special-purpose Set 
implementation that accepts only elements of one type and represents the set internally as a bit 
vector. Such a set is best implemented in the same package as its element type to allow 
access, via a package-private field or method, to a bit value internally associated with each 
typesafe enum constant. It makes sense to provide public constructors that take short 
sequences of elements as parameters so that idioms like this are possible: 

 
hand.discard(new SuitSet(Suit.CLUBS, Suit.SPADES)); 

A minor disadvantage of typesafe enums, when compared with int enums, is that typesafe 
enums can't be used in switch statements because they aren't integral constants. Instead, you 
use an if statement, like this: 

 
if (suit == Suit.CLUBS) { 
    ... 
} else if (suit == Suit.DIAMONDS) { 
    ... 
} else if (suit == Suit.HEARTS) { 
    ... 
} else if (suit == Suit.SPADES) { 
    ... 
} else { 
    throw new NullPointerException("Null Suit"); // suit == null 
} 

The if statement may not perform quite as well as the switch statement, but the difference is 
unlikely to be very significant. Furthermore, the need for multiway branches on typesafe 
enum constants should be rare because they're amenable to automatic method dispatching by 
the JVM, as in the Operator example. 

Another minor performance disadvantage of typesafe enums is that there is a space and time 
cost to load enum type classes and construct the constant objects. Except on               
resource-constrained devices like cell phones and toasters, this problem in unlikely to be 
noticeable in practice. 
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In summary, the advantages of typesafe enums over int enums are great, and none of the 
disadvantages seem compelling unless an enumerated type is to be used primarily as a set 
element or in a severely resource constrained environment. Thus the typesafe enum pattern 
should be what comes to mind when circumstances call for an enumerated type. APIs 
that use typesafe enums are far more programmer friendly than those that use int enums. 
The only reason that typesafe enums are not used more heavily in the Java platform APIs is 
that the typesafe enum pattern was unknown when many of those APIs were written. Finally, 
it's worth reiterating that the need for enumerated types of any sort should be relatively rare, 
as a major use of these types has been made obsolete by subclassing (Item 20). 

Item 22: Replace function pointers with classes and interfaces 

C supports function pointers, which allow a program to store and transmit the ability to 
invoke a particular function. Function pointers are typically used to allow the caller of 
a function to specialize its behavior by passing in a pointer to a second function, sometimes 
referred to as a callback. For example, the qsort function in C's standard library takes 
a pointer to a comparator function, which it uses to compare the elements to be sorted. 
The comparator function takes two parameters, each of which is a pointer to an element. It 
returns a negative integer if the element pointed to by the first parameter is less than the one 
pointed to by the second, zero if the two elements are equal, and a positive integer if 
the element pointed to by the first parameter is greater than the one pointed to by the second. 
Different sort orders can be obtained by passing in different comparator functions. This is an 
example of the Strategy pattern [Gamma98, p.315]; the comparator function represents 
a strategy for sorting elements. 

Function pointers were omitted from the Java programming language because object 
references can be used to provide the same functionality. Invoking a method on an object 
typically performs some operation on that object. However, it is possible to define an object 
whose methods perform operations on other objects, passed explicitly to the methods. 
An instance of a class that exports exactly one such method is effectively a pointer to that 
method. Such instances are known as function objects. For example, consider the following 
class: 

 
class StringLengthComparator { 
    public int compare(String s1, String s2) { 
        return s1.length() - s2.length(); 
    } 
} 

This class exports a single method that takes two strings and returns a negative integer if 
the first string is shorter than the second, zero if the two strings are of equal length, and 
a positive integer if the first string is longer. This method is a comparator that orders strings 
based on their length instead of the more typical lexicographic ordering. A reference to 
a StringLengthComparator object serves as a “function pointer” to this comparator, 
allowing it to be invoked on arbitrary pairs of strings. In other words, 
a StringLengthComparator instance is a concrete strategy for string comparison. 

As is typical for concrete strategy classes, the StringLengthComparator class is stateless: It 
has no fields, hence all instances of the class are functionally equivalent to one another. Thus 
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it could just as well be a singleton to save on unnecessary object creation costs (Item 4, 
Item 2): 

 
class StringLengthComparator { 
    private StringLengthComparator() { } 
 
    public static final StringLengthComparator 
        INSTANCE = new StringLengthComparator(); 
 
    public int compare(String s1, String s2) { 
        return s1.length() - s2.length(); 
    } 
} 

To pass a StringLengthComparator instance to a method, we need an appropriate type for 
the parameter. It would do no good to use StringLengthComparator because clients would 
be unable to pass any other comparison strategy. Instead, we need to define a Comparator 
interface and modify StringLengthComparator to implement this interface. In other words, 
we need to define a strategy interface to go with the concrete strategy class. Here it is: 

 
// Strategy interface 
public interface Comparator { 
    public int compare(Object o1, Object o2); 
} 

This definition of the Comparator interface happens to come from the java.util package, 
but there's nothing magic about it; you could just as well have defined it yourself. So that it is 
applicable to comparators for objects other than strings, its compare method takes parameters 
of type Object rather than String. Therefore, the StringLengthComparator class shown 
earlier must be modified slightly to implement Comparator: The Object parameters must be 
cast to String prior to invoking the length method. 

Concrete strategy classes are often declared using anonymous classes (Item 18). 
The following statement sorts an array of strings according to length: 

 
Arrays.sort(stringArray, new Comparator() { 
    public int compare(Object o1, Object o2) { 
        String s1 = (String)o1; 
        String s2 = (String)o2; 
        return s1.length() - s2.length(); 
    } 
}); 

Because the strategy interface serves as a type for all of its concrete strategy instances, a 
concrete strategy class needn't be made public to export a concrete strategy. Instead, a “host 
class” can export a public static field (or static factory method) whose type is the strategy 
interface, and the concrete strategy class can be a private nested class of the host. In the 
example that follows, a static member class is used in preference to an anonymous class to 
allow the concrete strategy class to implement a second interface, Serializable: 
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// Exporting a concrete strategy 
class Host { 
    ...  // Bulk of class omitted 
 
    private static class StrLenCmp 
            implements Comparator, Serializable { 
        public int compare(Object o1, Object o2) { 
            String s1 = (String)o1; 
            String s2 = (String)o2; 
            return s1.length() - s2.length(); 
        } 
    } 
 
    // Returned comparator is serializable 
    public static final Comparator 
        STRING_LENGTH_COMPARATOR = new StrLenCmp(); 
} 

The String class uses this pattern to export a case-independent string comparator via its 
CASE_INSENSITIVE_ORDER field. 

To summarize, the primary use of C's function pointers is to implement the Strategy pattern. 
To implement this pattern in the Java programming language, declare an interface to represent 
the strategy and a class that implements this interface for each concrete strategy. When a 
concrete strategy is used only once, its class is typically declared and instantiated using an 
anonymous class. When a concrete strategy is exported for repeated use, its class is generally 
a private static member class, and it is exported via a public static final field whose type is the 
strategy interface. 
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Chapter 6. Methods 
This chapter discusses several aspects of method design: how to treat parameters and return 
values, how to design method signatures, and how to document methods. Much of 
the material in this chapter applies to constructors as well as to methods. Like Chapter 5, this 
chapter focuses on usability, robustness, and flexibility. 

Item 23: Check parameters for validity 

Most methods and constructors have some restrictions on what values may be passed into 
their parameters. For example, it is not uncommon that index values must be nonnegative and 
object references must be non-null. You should clearly document all such restrictions and 
enforce them with checks at the beginning of the method body. This is a special case of the 
general principle, and you should attempt to detect errors as soon as possible after they occur. 
Failing to do so makes it less likely that an error will be detected and makes it harder to 
determine the source of an error once it has been detected. 

If an invalid parameter value is passed to a method and the method checks its parameters 
before execution, it will fail quickly and cleanly with an appropriate exception. If the method 
fails to check its parameters, several things could happen. The method could fail with 
a confusing exception in the midst of processing. Worse, the method could return normally 
but silently compute the wrong result. Worst of all, the method could return normally but 
leave some object in a compromised state, causing an error at some unrelated point in the 
code at some undetermined time in the future. 

For public methods, use the Javadoc @throws tag to document the exception that will be 
thrown if a restriction on parameter values is violated (Item 44). Typically the exception will 
be IllegalArgumentException, IndexOutOfBoundsException, or NullPointerException 
(Item 42). Once you've documented the restrictions on a method's parameters and you've 
documented the exceptions that will be thrown if these restrictions are violated, it is a simple 
matter to enforce the restrictions. Here's a typical example: 

 
/** 
 * Returns a BigInteger whose value is (this mod m).  This method 
 * differs from the remainder method in that it always returns a 
 * nonnegative BigInteger. 
 * 
 * @param  m the modulus, which must be positive. 
 * @return this mod m. 
 * @throws ArithmeticException if m <= 0. 
 */ 
public BigInteger mod(BigInteger m) { 
    if (m.signum() <= 0) 
        throw new ArithmeticException("Modulus not positive"); 
 
    ... // Do the computation 
} 

For an unexported method, you as the package author control the circumstances under which 
the method is called, so you can and should ensure that only valid parameter values are ever 
passed in. Therefore nonpublic methods should generally check their parameters using 
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assertions rather than normal checks. If you are using a release of the platform that supports 
assertions (1.4 or later), you should use the assert construct; otherwise you should use a 
makeshift assertion mechanism. 

It is particularly important to check the validity of parameters that are not used by a method 
but are stored away for later use. For example, consider the static factory method on page 86, 
which takes an int array and returns a List view of the array. If a client of this method were 
to pass in null, the method would throw a NullPointerException because the method 
contains an explicit check. If the check had been omitted, the method would return a reference 
to a newly created List instance that would throw a NullPointerException as soon as a 
client attempted to use it. By that time, unfortunately, the origin of the List instance might be 
very difficult to determine, which could greatly complicate the task of debugging. 

Constructors represent a special case of the principle that you should check the validity of 
parameters that are to be stored away for later use. It is very important to check the validity of 
parameters to constructors to prevent the construction of an object that violates class 
invariants. 

There are exceptions to the rule that you should check a method's parameters before 
performing its computation. An important exception is the case in which the validity check 
would be expensive or impractical and the validity check is performed implicitly in the 
process of doing the computation. For example, consider a method that sorts a list of objects, 
such as Collections.sort(List). All of the objects in the list must be mutually 
comparable. In the process of sorting the list, every object in the list will be compared to some 
other object in the list. If the objects aren't mutually comparable, one of these comparisons 
will throw a ClassCastException, which is exactly what the sort method should do. 
Therefore there would be little point in checking ahead of time that the elements in the list 
were mutually comparable. Note, however, that indiscriminate application of this technique 
can result in a loss of failure atomicity (Item 46). 

Occasionally, a computation implicitly performs the required validity check on some 
parameter but throws the wrong exception if the check fails. That is to say, the exception that 
the computation would naturally throw as the result of an invalid parameter value does not 
match the exception that you have documented the method to throw. Under these 
circumstances, you should use the exception translation idiom described in Item 43 to 
translate the natural exception into the correct one. 

Do not infer from this item that arbitrary restrictions on parameters are a good thing. On the 
contrary, you should design methods to be as general as it is practical to make them. The 
fewer restrictions that you place on parameters, the better, assuming the method can do 
something reasonable with all of the parameter values that it accepts. Often, however, some 
restrictions are intrinsic to the abstraction being implemented. 

To summarize, each time you write a method or constructor, you should think about what 
restrictions exist on its parameters. You should document these restrictions and enforce them 
with explicit checks at the beginning of the method body. It is important to get into the habit 
of doing this; the modest work that it entails will be paid back with interest the first time a 
validity check fails. 
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Item 24: Make defensive copies when needed 

One thing that makes the Java programming language such a pleasure to use is that it is a safe 
language. This means that in the absence of native methods it is immune to buffer overruns, 
array overruns, wild pointers, and other memory corruption errors that plague unsafe 
languages such as C and C++. In a safe language it is possible to write classes and to know 
with certainty that their invariants will remain true, no matter what happens in any other part 
of the system. This is not possible in languages that treat all of memory as one giant array. 

Even in a safe language, you aren't insulated from other classes without some effort on your 
part. You must program defensively with the assumption that clients of your class will do 
their best to destroy its invariants. This may actually be true if someone tries to break the 
security of your system, but more likely your class will have to cope with unexpected 
behavior resulting from honest mistakes on the part of the programmer using your API. Either 
way, it is worth taking the time to write classes that are robust in the face of ill-behaved 
clients. 

While it is impossible for another class to modify an object's internal state without some 
assistance from the object, it is surprisingly easy to provide such assistance without meaning 
to do so. For example, consider the following class, which purports to represent an immutable 
time period: 

 
// Broken "immutable" time period class 
public final class Period { 
    private final Date start; 
    private final Date end; 
 
    /** 
     * @param  start the beginning of the period. 
     * @param  end the end of the period; must not precede start. 
     * @throws IllegalArgumentException if start is after end. 
     * @throws NullPointerException if start or end is null. 
     */ 
    public Period(Date start, Date end) { 
        if (start.compareTo(end) > 0) 
            throw new IllegalArgumentException(start + " after " 
                                               + end); 
        this.start = start; 
        this.end   = end; 
    } 
 
    public Date start() { 
        return start; 
    } 
    public Date end() { 
        return end; 
    } 
 
    ...  // Remainder omitted 
} 

At first glance, this class may appear to be immutable and to enforce the invariant that the 
start of a period does not follow its end. It is, however, easy to violate this invariant by 
exploiting the fact that Date is mutable: 
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// Attack the internals of a Period instance 
Date start = new Date(); 
Date end = new Date(); 
Period p = new Period(start, end); 
end.setYear(78);  // Modifies internals of p! 

To protect the internals of a Period instance from this sort of attack, it is essential to make a 
defensive copy of each mutable parameter to the constructor and to use the copies as 
components of the Period instance in place of the originals: 

 
// Repaired constructor - makes defensive copies of parameters 
public Period(Date start, Date end) { 
    this.start = new Date(start.getTime()); 
    this.end   = new Date(end.getTime()); 
 
    if (this.start.compareTo(this.end) > 0) 
      throw new IllegalArgumentException(start +" after "+ end); 
} 

With the new constructor in place, the previous attack will have no effect on the Period 
instance. Note that defensive copies are made before checking the validity of the 
parameters (Item 23), and the validity check is performed on the copies rather than on 
the originals. While this may seem unnatural, it is necessary. It protects the class against 
changes to the parameters from another thread during the “window of vulnerability” between 
the time the parameters are checked and the time they are copied. 

Note also that we did not use Date's clone method to make the defensive copies. Because 
Date is nonfinal, the clone method is not guaranteed to return an object whose class is 
java.util.Date; it could return an instance of an untrusted subclass specifically designed 
for malicious mischief. Such a subclass could, for example, record a reference to each 
instance in a private static list at the time of its creation and allow the attacker access to this 
list. This would give the attacker free reign over all instances. To prevent this sort of attack, 
do not use the clone method to make a defensive copy of a parameter whose type is 
subclassable by untrusted parties. 

While the replacement constructor successfully defends against the previous attack, it is still 
possible to mutate a Period instance because its accessors offer access to its mutable 
internals: 

 
// Second attack on the internals of a Period instance 
Date start = new Date(); 
Date end = new Date(); 
Period p = new Period(start, end); 
p.end().setYear(78);  // Modifies internals of p! 

To defend against the second attack, merely modify the accessors to return defensive copies 
of mutable internal fields: 
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// Repaired accessors - make defensive copies of internal fields 
public Date start() { 
    return (Date) start.clone(); 
} 
 
public Date end() { 
    return (Date) end.clone(); 
} 

With the new constructor and the new accessors in place, Period is truly immutable. No 
matter how malicious or incompetent a programmer, there is simply no way he can violate 
the invariant that the start of a period does not follow its end. This is true because there is no 
way for any class other than Period itself to gain access to either of the mutable fields in 
a Period instance. These fields are truly encapsulated within the object. 

Note that the new accessors, unlike the new constructor, do use the clone method to make 
defensive copies. This is acceptable (although not required), as we know with certainty that 
the class of Period's internal Date objects is java.util.Date rather than some potentially 
untrusted subclass. 

Defensive copying of parameters is not just for immutable classes. Anytime you write 
a method or constructor that enters a client-provided object into an internal data structure, 
think about whether the client-provided object is potentially mutable. If it is, think about 
whether your class could tolerate a change in the object after it was entered into the data 
structure. If the answer is no, you must defensively copy the object and enter the copy into 
the data structure in place of the original. For example, if you are considering using           
a client-provided object reference as an element in an internal Set instance or as a key in 
an internal Map instance, you should be aware that the invariants of the set or map would be 
destroyed if the object were modified after it were inserted. 

The same is true for defensive copying of internal components prior to returning them to 
clients. Whether or not your class is immutable, you should think twice before returning 
a reference to an internal component that is mutable. Chances are you should be returning 
a defensive copy. Also, it is critical to remember that nonzero-length arrays are always 
mutable. Therefore you should always make a defensive copy of an internal array before 
returning it to a client. Alternatively, you could return an immutable view of the array to 
the user. Both of these techniques are shown in Item 12. 

Arguably, the real lesson in all of this is that you should, where possible, use immutable 
objects as components of your objects so that you that don't have to worry about defensive 
copying (Item 13). In the case of our Period example, it is worth pointing out that 
experienced programmers often use the primitive long returned by Date.getTime() as 
an internal time representation rather than using a Date object reference. They do this 
primarily because Date is mutable. 

It is not always appropriate to make a defensive copy of a mutable parameter before 
integrating it into an object. There are some methods and constructors whose invocation 
indicates an explicit handoff of the object referenced by a parameter. When invoking such a 
method, the client promises that it will no longer modify the object directly. A method or 
constructor that expects to take control of a client-provided mutable object must make this 
clear in its documentation. 
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Classes containing methods or constructors whose invocation indicates a transfer of control 
cannot defend themselves against malicious clients. Such classes are acceptable only when 
there is mutual trust between the class and its client or when damage to the class's invariants 
would harm no one but the client. An example of the latter situation is the wrapper class 
pattern (Item 14). Depending on the nature of the wrapper class, the client could destroy the 
class's invariants by directly accessing an object after it has been wrapped, but this typically 
would harm only the client. 

Item 25: Design method signatures carefully 

This item is a grab bag of API design hints that don't quite deserve items of their own. Taken 
together, they'll help make your API easier to learn and use and less prone to errors. 

Choose method names carefully.  Names should always obey the standard naming 
conventions (Item 38). Your primary goal should be to choose names that are understandable 
and consistent with other names in the same package. Your secondary goal should be to 
choose names consistent with the broader consensus, where it exists. When in doubt, look to 
the Java library APIs for guidance. While there are plenty of inconsistencies—inevitable, 
given the size and scope of the libraries—there is also consensus. An invaluable resource is 
Patrick Chan's The Java Developers Almanac [Chan00], which contains the method 
declarations for every single method in the Java platform libraries, indexed alphabetically. If, 
for example, you were wondering whether to name a method remove or delete, a quick look 
at the index of this book would tell you that remove was the obvious choice. There are 
hundreds of methods whose names begin with remove and a small handful whose names 
begin with delete. 

Don't go overboard in providing convenience methods.  Every method should “pull its 
weight.” Too many methods make a class difficult to learn, use, document, test, and maintain. 
This is doubly true for interfaces, where too many methods complicate life for implementors 
as well as for users. For each action supported by your type, provide a fully functional 
method. Consider providing a “shorthand” for an operation only when it will be used 
frequently. When in doubt, leave it out. 

Avoid long parameter lists.  As a rule, three parameters should be viewed as a practical 
maximum, and fewer is better. Most programmers can't remember longer parameter lists. If 
many of your methods exceed this limit, your API won't be usable without constant reference 
to its documentation. Long sequences of identically typed parameters are especially 
harmful. Not only won't the users of your API be able to remember the order of the 
parameters, but when they transpose parameters by mistake, their programs will still compile 
and run. They just won't do what their authors intended. 

There are two techniques for shortening overly long parameter lists. One is to break the 
method up into multiple methods, each of which requires only a subset of the parameters. If 
done carelessly, this can lead to too many methods, but it can also help reduce the method 
count by increasing orthogonality. For example, consider the java.util.List interface. It 
does not provide methods to find the first or last index of an element in a sublist, both of 
which would require three parameters. Instead it provides the subList method, which takes 
two parameters and returns a view of a sublist. This method can be combined with the 
indexOf or lastIndexOf methods, each of which has a single parameter, to yield the desired 
functionality. Moreover, the subList method can be combined with any other method that 
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operates on a List instance to perform arbitrary computations on sublists. The resulting API 
has a very high power-to-weight ratio. 

A second technique for shortening overly long parameter lists is to create helper classes to 
hold aggregates of parameters. Typically these helper classes are static member classes 
(Item 18). This technique is recommended if a frequently occurring sequence of parameters is 
seen to represent some distinct entity. For example suppose you are writing a class 
representing a card game, and you find yourself constantly passing a sequence of two 
parameters representing a card's rank and its suit. Your API, as well as the internals of your 
class, would probably be improved if you added a helper class to represent a card and 
replaced every occurrence of the parameter sequence with a single parameter of the helper 
class. 

For parameter types, favor interfaces over classes.  Whenever an appropriate interface to 
define a parameter exists, use it in favor of a class that implements the interface. For example, 
there is no reason ever to write a method that takes Hashtable on input—use Map instead. 
This lets you pass in a Hashtable, a HashMap, a TreeMap, a submap of a TreeMap, or any Map 
implementation yet to be written. By using a class instead of an interface, you restrict your 
client to a particular implementation and force an unnecessary and potentially expensive copy 
operation if the input data happen to exist in some other form. 

Use function objects (Item 22) judiciously.  There are some languages, notably Smalltalk 
and the various Lisp dialects, that encourage a style of programming rich in objects that 
represent functions to be applied to other objects. Programmers with experience in these 
languages may be tempted to adopt a similar style in the Java programming language, but it 
isn't a terribly good fit. The easiest way to create a function object is with an anonymous class 
(Item 18), but even that involves some syntactic clutter and has limitations in power and 
performance when compared to inline control constructs. Furthermore, the style of 
programming wherein you are constantly creating function objects and passing them from 
method to method is out of the mainstream, so other programmers will have a difficult time 
understanding your code if you adopt this style. This is not meant to imply that function 
objects don't have legitimate uses; they are essential to many powerful design patterns, such 
as Strategy [Gamma98, p. 315] and Visitor [Gamma98, p. 331]. Rather, function objects 
should be used only with good reason. 

Item 26: Use overloading judiciously 

Here is a well-intentioned attempt to classify collections according to whether they are sets, 
lists, or some other kind of collections: 

 
//Broken - incorrect use of overloading! 
public class CollectionClassifier { 
    public static String classify(Set s) { 
        return "Set"; 
    } 
 
    public static String classify(List l) { 
        return "List"; 
    } 
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    public static String classify(Collection c) { 
        return "Unknown Collection"; 
    } 
 
    public static void main(String[] args) { 
        Collection[] tests = new Collection[] { 
            new HashSet(),          // A Set 
            new ArrayList(),        // A List 
            new HashMap().values()  // Neither Set nor List 
        }; 
 
        for (int i = 0; i < tests.length; i++) 
            System.out.println(classify(tests[i])); 
    } 
} 

You might expect this program to print “Set,” followed by “List” and “Unknown 
Collection,” but it doesn't; it prints out “Unknown Collection” three times. Why does this 
happen? Because the classify method is overloaded, and the choice of which overloading 
to invoke is made at compile time. For all three iterations of the loop, the compile-time type 
of the parameter is the same: Collection. The run-time type is different in each iteration, but 
this does not affect the choice of overloading. Because the compile-time type of the parameter 
is Collection, the only applicable overloading is the third one, classify(Collection), and 
this overloading is invoked in each iteration of the loop. 

The behavior of this program is counterintuitive because selection among overloaded 
methods is static, while selection among overridden methods is dynamic. The correct 
version of an overridden method is chosen at run time, based on the run-time type of the 
object on which the method is invoked. As a reminder, a method is overridden when a 
subclass contains a method declaration with exactly the same signature as a method 
declaration in an ancestor. If an instance method is overridden in a subclass and this method is 
invoked on an instance of the subclass, the subclass's overriding method executes, regardless 
of the compile-time type of the subclass instance. To make this concrete, consider the 
following little program: 

 
class A { 
    String name() { return "A"; } 
} 
 
class B extends A { 
    String name() { return "B"; } 
} 
 
class C extends A { 
    String name() { return "C"; } 
} 
 
public class Overriding { 
    public static void main(String[] args) { 
        A[] tests = new A[] { new A(), new B(), new C() }; 
 
        for (int i = 0; i < tests.length; i++) 
            System.out.print(tests[i].name()); 
    } 
} 
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The name method is declared in class A and overridden in classes B and C. As you would 
expect, this program prints out “ABC” even though the compile-time type of the instance is A 
in each iteration of the loop. The compile-time type of an object has no effect on which 
method is executed when an overridden method is invoked; the “most specific” overriding 
method always gets executed. Compare this to overloading, where the run-time type of an 
object has no effect on which overloading is executed; the selection is made at compile time, 
based entirely on the compile-time types of the parameters. 

In the CollectionClassifier example, the intent of the program was to discern the type of 
the parameter by dispatching automatically to the appropriate method overloading based on 
the run-time type of the parameter, just as the name method did in the “ABC” example. Method 
overloading simply does not provide this functionality. The way to fix the program is to 
replace all three overloadings of classify with a single method that does an explicit 
instanceof test: 

 
public static String classify(Collection c) { 
   return (c instanceof Set ? "Set" : 
           (c instanceof List ? "List" : "Unknown Collection")); 
} 

Because overriding is the norm and overloading is the exception, overriding sets people's 
expectations for the behavior of method invocation. As demonstrated by the 
CollectionClassifier example, overloading can easily confound these expectations. It is 
bad practice to write code whose behavior would not be obvious to the average programmer 
upon inspection. This is especially true for APIs. If the typical user of an API does not know 
which of several method overloadings will get invoked for a given set of parameters, use of 
the API is likely to result in errors. These errors will likely manifest themselves as erratic 
behavior at run time, and many programmers will be unable to diagnose them. Therefore you 
should avoid confusing uses of overloading. 

Exactly what constitutes a confusing use of overloading is open to some debate. A safe, 
conservative policy is never to export two overloadings with the same number of 
parameters. If you adhere to this restriction, programmers will never be in doubt as to which 
overloading applies to any set of parameters. This restriction is not terribly onerous because 
you can always give methods different names instead of overloading. 

For example, consider the class ObjectOutputStream. It has a variant of its write method 
for every primitive type and for several reference types. Rather than overloading the write 
method, these variants have signatures like writeBoolean(boolean), writeInt(int), and 
writeLong(long). An added benefit of this naming pattern, when compared to overloading, 
is that it is possible to provide read methods with corresponding names, for example, 
readBoolean(), readInt(), and readLong(). The ObjectInputStream class does, in fact, 
provide read methods with these names. 

For constructors, you don't have the option of using different names; multiple constructors for 
a class are always overloaded. You do, in some cases, have the option of exporting static 
factories instead of constructors (Item 1), but that isn't always practical. On the bright side, 
with constructors you don't have to worry about interactions between overloading and 
overriding, as constructors can't be overridden. Because you'll probably have occasion to 
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export multiple constructors with the same number of parameters, it pays to know when it is 
safe to do so. 

Exporting multiple overloadings with the same number of parameters is unlikely to confuse 
programmers if it is always clear which overloading will apply to any given set of actual 
parameters. This is the case when at least one corresponding formal parameter in each pair of 
overloadings has a “radically different” type in the two overloadings. Two types are radically 
different if it is clearly impossible to cast an instance of either type to the other. Under these 
circumstances, which overloading applies to a given set of actual parameters is fully 
determined by the run-time types of the parameters and cannot be affected by their compile-
time types, so the major source of confusion evaporates. 

For example, ArrayList has one constructor that takes an int and a second constructor that 
takes a Collection. It is hard to imagine any confusion over which of these two constructors 
will be invoked under any circumstances because primitive types and reference types are 
radically different. Similarly, BigInteger has one constructor that takes a byte array and 
another that takes a String; this causes no confusion. Array types and classes other than 
Object are radically different. Also, array types and interfaces other than Serializable and 
Cloneable are radically different. Finally, Throwable, as of release 1.4, has one constructor 
that takes a String and another takes a Throwable. The classes String and Throwable are 
unrelated, which is to say that neither class is a descendant of the other. It is impossible for 
any object to be an instance of two unrelated classes, so unrelated classes are radically 
different. 

There are a few additional examples of pairs of types that can't be converted in either 
direction [JLS, 5.1.7], but once you go beyond these simple cases, it can become very difficult 
for the average programmer to discern which, if any, overloading applies to a set of actual 
parameters. The specification that determines which overloading is selected is complex, and 
few programmers understand all of its subtleties [JLS, 15.12.1-3]. 

Occasionally you may be forced to violate the above guidelines when retrofitting existing 
classes to implement new interfaces. For example, many of the value types in the Java 
platform libraries had “self-typed” compareTo methods prior to the introduction of the 
Comparable interface. Here is the declaration for String's original self-typed compareTo 
method: 

 
public int compareTo(String s); 

With the introduction of the Comparable interface, all of the these classes were retrofitted to 
implement this interface, which involved adding a more general compareTo method with this 
declaration: 

 
public int compareTo(Object o); 

While the resulting overloading is clearly a violation of the above guidelines, it causes no 
harm as long as both overloaded methods always do exactly the same thing when they are 
invoked on the same parameters. The programmer may not know which overloading will be 
invoked, but it is of no consequence as long as both methods return the same result. The 
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standard way to ensure this behavior is to have the more general overloading forward to the 
more specific: 

 
public int compareTo(Object o) { 
    return compareTo((String) o); 
} 

A similar idiom is sometimes used for equals methods: 

 
public boolean equals(Object o) { 
    return o instanceof String && equals((String) o); 
} 

This idiom is harmless and may result in slightly improved performance if the compile-time 
type of the parameter matches the parameter of the more specific overloading. That said, it 
probably isn't worth doing as a matter of course (Item 37). 

While the Java platform libraries largely adhere to the advice in this item, there are a number 
of places where it is violated. For example, the String class exports two overloaded static 
factory methods, valueOf(char[]) and valueOf(Object), that do completely different 
things when passed the same object reference. There is no real justification for this, and it 
should be regarded as an anomaly with the potential for real confusion. 

To summarize, just because you can overload methods doesn't mean you should. You should 
generally refrain from overloading methods with multiple signatures that have the same 
number of parameters. In some cases, especially where constructors are involved, it may be 
impossible to follow this advice. In that case, you should at least avoid situations where the 
same set of parameters can be passed to different overloadings by the addition of casts. If such 
a situation cannot be avoided, for example because you are retrofitting an existing class to 
imple ment a new interface, you should ensure that all overloadings behave identically when 
passed the same parameters. If you fail to do this, programmers will not be able to make 
effective use of the overloaded method or constructor, and they won't understand why it 
doesn't work. 

Item 27: Return zero-length arrays, not nulls 

It is not uncommon to see methods that look something like this: 

 
private List cheesesInStock = ...; 
 
/** 
 * @return an array containing all of the cheeses in the shop, 
 *         or null if no cheeses are available for purchase. 
 */ 
public Cheese[] getCheeses() { 
    if (cheesesInStock.size() == 0) 
        return null; 
    ... 
} 
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There is no reason to make a special case for the situation where no cheeses are available for 
purchase. Doing so requires extra code in the client to handle the null return value, for 
example: 

 
Cheese[] cheeses = shop.getCheeses(); 
if (cheeses != null && 
    Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON)) 
    System.out.println("Jolly good, just the thing."); 

instead of: 

 
if (Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON)) 
    System.out.println("Jolly good, just the thing."); 

This sort of circumlocution is required in nearly every use of a method that returns null in 
place of a zero length array. It is error prone, as the programmer writing the client might 
forget to write the special-case code to handle a null return. Such an error may go unnoticed 
for years, as such methods usually return one or more objects. Less significant, but still 
worthy of note, returning null in place of a zero length array also complicates the array-
returning method itself. 

It is sometimes argued that a null return value is preferable to a zero-length array because it 
avoids the expense of allocating the array. This argument fails on two counts. First, it is 
inadvisable to worry about performance at this level unless profiling has shown that the 
method in question is a real contributor to performance problems (Item 37). Second, it is 
possible to return the same zero-length array from every invocation that returns no items 
because zero-length arrays are immutable and immutable objects may be shared freely 
(Item 13). In fact, this is exactly what happens when you use the standard idiom for dumping 
items from a collection into a typed array: 

 
private List cheesesInStock = ...; 
 
private final static Cheese[] NULL_CHEESE_ARRAY = new Cheese[0]; 
 
/** 
 * @return an array containing all of the cheeses in the shop. 
 */ 
public Cheese[] getCheeses() { 
  return (Cheese[]) cheesesInStock.toArray(NULL_CHEESE_ARRAY); 
} 

In this idiom, a zero-length array constant is passed to the toArray method to indicate the 
desired return type. Normally the toArray method allocates the returned array, but if the 
collection is empty, it fits in the input array, and the specification for 
Collection.toArray(Object[]) guarantees that the input array will be returned if it is large 
enough to hold the collection. Therefore the idiom never allocates a zero-length array but 
instead reuses the “type-specifier constant.” 

In summary, there is no reason ever to return null from an array-valued method instead 
of returning a zero-length array. This idiom is likely a holdover from the C programming 
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language, in which array lengths are returned separately from actual arrays. In C, there is no 
advantage to allocating an array if zero is returned as the length. 

Item 28: Write doc comments for all exposed API elements 

If an API is to be usable, it must be documented. Traditionally API documentation was 
generated manually, and keeping documentation in sync with code was a big chore. The Java 
programming environment eases this task with a utility called Javadoc. This utility generates 
API documentation automatically from source code in conjunction with specially formatted 
documentation comments, more commonly known as doc comments. The Javadoc utility 
provides an easy and effective way to document your APIs, and its use is widespread. 

If you are not already familiar with the doc comment conventions, you should learn them. 
While these conventions are not part of the Java programming language, they constitute a de 
facto API that every programmer should know. The conventions are defined The Javadoc 
Tool Home Page [Javadoc-b]. 

To document your API properly, you must precede every exported class, interface, 
constructor, method, and field declaration with a doc comment, subject to one exception 
discussed at the end of this item. In the absence of a doc comment, the best that Javadoc can 
do is to reproduce the declaration as the sole documentation for the affected API element. It is 
frustrating and error-prone to use an API with missing documentation comments. To write 
maintainable code, you should also write doc comments for unexported classes, interfaces, 
constructors, methods, and fields. 

The doc comment for a method should describe succinctly the contract between 
the method and its client.  With the exception of methods in classes designed for inheritance 
(Item 15), the contract should say what the method does rather than how it does its job. 
The doc comment should enumerate all of the method's preconditions, which are the things 
that have to be true in order for a client to invoke it, and its postconditions, which are 
the things that will be true after the invocation has completed successfully. Typically, 
preconditions are described implicitly by the @throws tags for unchecked exceptions; each 
unchecked exception corresponds to a precondition violation. Also, preconditions can be 
specified along with the affected parameters in their @param tags. 

In addition to preconditions and postconditions, methods should document any side effects. 
A side effect is an observable change in the state of the system that is not obviously required 
to achieve the postcondition. For example, if a method starts a background thread, 
the documentation should make note of it. Finally, documentation comments should describe 
the thread safety of a class, as discussed in Item 52. 

To describe its contract fully, the doc comment for a method should have a @param tag for 
every parameter, a @return tag unless the method has a void return type, and a @throws tag 
for every exception thrown by the method, whether checked or unchecked (Item 44). By 
convention the text following a @param tag or @return tag should be a noun phrase 
describing the value represented by the parameter or return value. The text following 
a @throws tag should consist of the word “if,” followed by a noun phrase describing 
the conditions under which the exception is thrown. Occasionally, arithmetic expressions are 
used in place of noun phrases. All of these conventions are illustrated in the following short 
doc comment, which comes from the List interface: 
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/** 
 * Returns the element at the specified position in this list. 
 * 
 * @param  index index of element to return; must be 
 *         nonnegative and less than the size of this list. 
 * @return the element at the specified position in this list. 
 * @throws IndexOutOfBoundsException if the index is out of range 
 *         (<tt>index &lt; 0 || index &gt;= this.size()</tt>). 
 */ 
Object get(int index) 

Notice the use of HTML metacharacters and tags in this doc comment. The Javadoc utility 
translates doc comments into HTML, and arbitrary HTML elements contained in doc 
comments end up in the resulting HTML document. Occasionally programmers go so far as to 
embed HTML tables in their doc comments, although this is uncommon. The most commonly 
used tags are <p> to separate paragraphs; <code> and <tt>, which are used for code 
fragments; and <pre>, which is used for longer code fragments. 

The <code> and <tt> tags are largely equivalent. The <code> tag is more commonly used 
and, according to the HTML 4.01 specification, is generally preferable because <tt> is a font 
style element. (The use of font style elements is discouraged in favor of style sheets 
[HTML401].) That said, some programmers prefer <tt> because it is shorter and less 
intrusive. 

Don't forget that escape sequences are required to generate HTML metacharacters, such as the 
less than sign (<), the greater than sign (>), and the ampersand (&). To generate a less than 
sign, use the escape sequence “&lt;”. To generate a greater than sign, use the escape sequence 
“&gt;”. To generate an ampersand, use the escape sequence “&amp;”. The use of escape 
sequences is demonstrated in the @throws tag of the above doc comment. 

Finally, notice the use of word “this” in the doc comment. By convention, the word “this” 
always refers to the object on which the method is invoked when it is used in the doc 
comment for an instance method. 

The first sentence of each doc comment becomes the summary description of the element to 
which the comment pertains. The summary description must stand on its own to describe the 
functionality of the entity it summarizes. To avoid confusion, no two members or constructors 
in a class or interface should have the same summary description. Pay particular attention to 
overloadings, for which it is often natural to use the same first sentence in a prose description. 

Be careful not to include a period within the first sentence of a doc comment. If you do, it will 
prematurely terminate the summary description. For example, a documentation comment that 
began with “A college degree, such as B.S., M.S., or Ph.D.” would result in a summary 
description of “A college degree, such as B.” The best way avoid this problem is to avoid the 
use of abbreviations and decimal fractions in summary descriptions. It is, however, possible to 
include a period in a summary description by replacing the period with its numeric encoding, 
“&#46;”. While this works, it doesn't make for pretty source code: 
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/** 
 * A college degree, such as B&#46;S&#46;, M&#46;S&#46; or 
 * Ph&#46;D. 
 */ 
public class Degree { ... } 

It is somewhat misleading to say that the summary description is the first sentence in a doc 
comment. Convention dictates that it should seldom be a complete sentence. For methods and 
constructors, the summary description should be a verb phrase describing the action 
performed by the method. For example, 

• ArrayList(int initialCapacity)—  Constructs an empty list with the specified 
initial capacity. 

• Collection.size()—  Returns the number of elements in this collection. 

For classes, interfaces, and fields, the summary description should be a noun phrase 
describing the thing represented by an instance of the class or interface or by the field itself. 
For example, 

• TimerTask—  A task that can be scheduled for one-time or repeated execution by a 
Timer. 

• Math.PI—  The double value that is closer than any other to pi, the ratio of the 
circumference of a circle to its diameter. 

The doc comment conventions described in this item are sufficient to get by, but there are 
many others. There are several style guides for writing doc comments [Javadoc-a, 
Vermeulen00]. Also, there are utilities to check adherence to these rules [Doclint]. 

Since release 1.2.2, Javadoc has had the ability to “automatically reuse” or “inherit” method 
comments. If a method does not have a doc comment, Javadoc searches for the most specific 
applicable doc comment, giving preference to interfaces over superclasses. The details of the 
search algorithm can be found in The Javadoc Manual. 

This means that classes can now reuse the doc comments from interfaces they implement, 
rather than copying these comments. This facility has the potential to reduce or eliminate the 
burden of maintaining multiple sets of nearly identical doc comments, but it does have a 
limitation. Doc-comment inheritance is all-or-nothing: the inheriting method cannot modify 
the inherited doc comment in any way. It is not uncommon for a method to specialize the 
contract inherited from an interface, in which case the method really does need its own doc 
comment. 

A simple way to reduce the likelihood of errors in documentation comments is to run the 
HTML files generated by Javadoc through an HTML validity checker. This will detect many 
incorrect uses of HTML tags, as well as HTML metacharacters that should have been 
escaped. Several HTML validity checkers are available for download, such as weblint 
[Weblint]. 

One caveat should be added concerning documentation comments. While it is necessary to 
provide documentation comments for all exported API elements, it is not always sufficient. 
For complex APIs consisting of multiple interrelated classes, it is often necessary to 
supplement the documentation comments with an external document describing the overall 
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architecture of the API. If such a document exists, the relevant class or package 
documentation comments should include a link to it. 

To summarize, documentation comments are the best, most effective way to document your 
API. Their use should be considered mandatory for all exported API elements. Adopt a 
consistent style adhering to standard conventions. Remember that arbitrary HTML is 
permissible within documentation comments and that HTML metacharacters must be escaped. 
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Chapter 7. General Programming 
This chapter is largely devoted to the nuts and bolts of the language. It discusses the treatment 
of local variables, the use of libraries, the use of various data types, and the use of two 
extralinguistic facilities: reflection and native methods. Finally, it discusses optimization and 
naming conventions. 

Item 29: Minimize the scope of local variables 

This item is similar in nature to Item 12, “Minimize the accessibility of classes and members.” 
By minimizing the scope of local variables, you increase the readability and maintainability of 
your code and reduce the likelihood of error. 

The C programming language mandates that local variables must be declared at the head of 
a block, and programmers continue to do this out of habit; it's a habit worth breaking. As 
a reminder, the Java programming language lets you declare variables anywhere a statement 
is legal. 

The most powerful technique for minimizing the scope of a local variable is to declare it 
where it is first used.  If a variable is declared before it is used, it is just clutter—one more 
thing to distract the reader who is trying to figure out what the program does. By the time 
the variable is used, the reader might not remember the variable's type or initial value. If 
the program evolves and the variable is no longer used, it is easy to forget to remove 
the declaration if it's far removed from the point of first use. 

Not only can declaring a local variable prematurely cause its scope to extend too early, but 
also too late. The scope of a local variable extends from the point of its declaration to the end 
of the enclosing block. If a variable is declared outside of the block in which it is used, it 
remains visible after the program exits that block. If a variable is used accidentally before or 
after its region of intended use, the consequences can be disastrous. 

Nearly every local variable declaration should contain an initializer.  If you don't yet have 
enough information to initialize a variable sensibly, you should postpone the declaration until 
you do. One exception to this rule concerns try-catch statements. If a variable is initialized 
by a method that throws a checked exception, it must be initialized inside a try block. If 
the value must be used outside of the try block, then it must be declared before the try 
block, where it cannot yet be “sensibly initialized.” For example, see page 159. 

Loops present a special opportunity to minimize the scope of variables. The for loop allows 
you to declareloop variables, limiting their scope to the exact region where they're needed. 
(This region consists of the body of the loop as well as the initialization, test, and update 
preceding the body.) Therefore prefer for loops to while loops, assuming the contents of 
the loop variable(s) aren't needed after the loop terminates. 

For example, here is the preferred idiom for iterating over a collection: 

 
for (Iterator i = c.iterator(); i.hasNext(); ) { 
    doSomething(i.next()); 
} 
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To see why this for loop is preferable to the more obvious while loop, consider the following 
code fragment, which contains two while loops and one bug: 

 
Iterator i = c.iterator(); 
while (i.hasNext()) { 
    doSomething(i.next()); 
} 
    ... 
 
Iterator i2 = c2.iterator(); 
while (i.hasNext()) {      // BUG! 
    doSomethingElse(i2.next()); 
} 

The second loop contains a cut-and-paste error: It initializes a new loop variable, i2, but uses 
the old one, i, which unfortunately is still in scope. The resulting code compiles without error 
and runs without throwing an exception, but it does the wrong thing. Instead of iterating over 
c2, the second loop terminates immediately, giving the false impression that c2 is empty. 
Because the program errs silently, the error can remain undetected for a long time. 

If the analogous cut-and-paste error were made in conjunction with the preferred for loop 
idiom, the resulting code wouldn't even compile. The loop variable from the first loop would 
not be in scope at the point where the second loop occurred: 

 
for (Iterator i = c.iterator(); i.hasNext(); ) { 
    doSomething(i.next()); 
} 
    ... 
 
// Compile-time error - the symbol i cannot be resolved 
for (Iterator i2 = c2.iterator(); i.hasNext(); ) { 
    doSomething(i2.next()); 
} 

Moreover, if you use the for loop idiom, it's much less likely that you'll make the cut-and-
paste error, as there's no incentive to use a different variable name in the two loops. The loops 
are completely independent, so there's no harm in reusing the loop variable name. In fact, it's 
stylish to do so. 

The for loop idiom has one other advantage over the while loop idiom, albeit a minor one. 
The for loop idiom is one line shorter, which helps the containing method fit in a fixed-size 
editor window, enhancing readability. 

Here is another loop idiom for iterating over a list that minimizes the scope of local variables: 

 
// High-performance idiom for iterating over random access lists 
for (int i = 0, n = list.size(); i < n; i++) { 
    doSomething(list.get(i)); 
} 
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This idiom is useful for random access List implementations such as ArrayList and Vector 
because it is likely to run faster than the “preferred idiom” above for such lists. The important 
thing to notice about this idiom is that it has two loop variables, i and n, both of which have 
exactly the right scope. The use of the second variable is essential to the performance of the 
idiom. Without it, the loop would have to call the size method once per iteration, which 
would negate the performance advantage of the idiom. Using this idiom is acceptable when 
you're sure the list really does provide random access; otherwise, it displays quadratic 
performance. 

Similar idioms exist for other looping tasks, for example, 

 
for (int i = 0, n = expensiveComputation(); i < n; i++) { 
    doSomething(i); 
} 

Again, this idiom uses two loop variables, and the second variable, n, is used to avoid the cost 
of performing redundant computation on every iteration. As a rule, you should use this idiom 
if the loop test involves a method invocation and the method invocation is guaranteed to 
return the same result on each iteration. 

A final technique to minimize the scope of local variables is to keep methods small and 
focused. If you combine two activities in the same method, local variables relevant to one 
activity may be in the scope of the code performing the other activity. To prevent this from 
happening, simply separate the method into two: one for each activity. 

Item 30: Know and use the libraries 

Suppose you want to generate random integers between 0 and some upper bound. Faced with 
this common task, many programmers would write a little method that looks something like 
this: 

 
static Random rnd = new Random(); 
 
// Common but flawed! 
static int random(int n) { 
    return Math.abs(rnd.nextInt()) % n; 
} 

This method isn't bad, but it isn't perfect, either—it has three flaws. The first flaw is that if n is 
a small power of two, the sequence of random numbers it generates will repeat itself after 
a fairly short period. The second flaw is that if n is not a power of two, some numbers will, on 
average, be returned more frequently than others. If n is large, this flaw can be quite 
pronounced. This is graphically demonstrated by the following program, which generates 
a million random numbers in a carefully chosen range and then prints out how many of 
the numbers fell in the lower half of the range: 
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public static void main(String[] args) { 
    int n = 2 * (Integer.MAX_VALUE / 3); 
    int low = 0; 
    for (int i = 0; i < 1000000; i++) 
        if (random(n) < n/2) 
            low++; 
 
    System.out.println(low); 
} 

If the random method worked properly, the program would print a number close to half 
a million, but if you run it, you'll find that it prints a number close to 666,666. Two thirds of 
the numbers generated by the random method fall in the lower half of its range! 

The third flaw in the random method is that it can, on rare occasion, fail catastrophically, 
returning a number outside the specified range. This is so because the method attempts to map 
the value returned by rnd.nextInt() into a nonnegative integer with Math.abs. If 
nextInt() returns Integer.MIN_VALUE, Math.abs will also return Integer.MIN_VALUE, and 
the remainder operator (%) will return a negative number, assuming n is not a power of two. 
This will almost certainly cause your program to fail, and the failure may be difficult to 
reproduce. 

To write a version of random that corrects these three flaws, you'd have to know a fair amount 
about linear congruential pseudorandom number generators, number theory, and two's 
complement arithmetic. Luckily, you don't have to do this—it's already been done for you. It's 
called Random.nextInt(int), and it was added to the standard library package java.util in 
release 1.2. 

You don't have to concern yourself with the details of how nextInt(int) does its job 
(although you can study the documentation or the source code if you're morbidly curious). A 
senior engineer with a background in algorithms spent a good deal of time designing, 
implementing, and testing this method and then showed it to experts in the field to make sure 
it was right. Then the library was beta tested, released, and used extensively by thousands of 
programmers for several years. No flaws have yet been found in the method, but if a flaw 
were to be discovered, it would get fixed in the next release. By using a standard library, 
you take advantage of the knowledge of the experts who wrote it and the experience of 
those who used it before you. 

A second advantage of using the libraries is that you don't have to waste your time writing ad 
hoc solutions to problems only marginally related to your work. If you are like most 
programmers, you'd rather spend your time working on your application than on the 
underlying plumbing. 

A third advantage of using standard libraries is that their performance tends to improve over 
time, with no effort on your part. Because many people use them and because they're used in 
industry-standard benchmarks, the organizations that supply these libraries have a strong 
incentive to make them run faster. For example, the standard multiprecision arithmetic library, 
java.math, was rewritten in release 1.3, resulting in dramatic performance improvements. 

Libraries also tend to gain new functionality over time. If a library class is missing some 
important functionality, the developer community will make this shortcoming known. The 
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Java platform has always been developed with substantial input from this community. 
Previously the process was informal; now there is a formal process in place called the Java 
Community Process (JCP). Either way, missing features tend to get added over time. 

A final advantage of using the standard libraries is that you place your code in the 
mainstream. Such code is more easily readable, maintainable, and reusable by the multitude 
of developers. 

Given all these advantages, it seems only logical to use library facilities in preference to ad 
hoc implementations, yet a significant fraction of programmers don't. Why? Perhaps they 
don't know that the library facilities exist. Numerous features are added to the libraries in 
every major release, and it pays to keep abreast of these additions. You can peruse the 
documentation online or read about the libraries in any number of books [J2SE-APIs, Chan00, 
Flanagan99, Chan98]. The libraries are too big to study all the documentation, but every 
programmer should be familiar with the contents of java.lang, java.util, and, to a 
lesser extent, java.io. Knowledge of other libraries can be acquired on an as-needed basis. 

It is beyond the scope of this item to summarize all the facilities in the libraries, but a few 
bear special mention. In the 1.2 release, a Collections Framework was added to the 
java.util package. It should be part of every programmer's basic toolkit. The Collections 
Framework is a unified architecture for representing and manipulating collections, allowing 
them to be manipulated independently of the details of their representation. It reduces 
programming effort while increasing performance. It allows for interoperability among 
unrelated APIs, reduces effort in designing and learning new APIs, and fosters software reuse. 

The framework is based on six collection interfaces (Collection, Set, List, Map, 
SortedList, and SortedMap). It includes implementations of these interfaces and algorithms 
to manipulate them. The legacy collection classes, Vector and Hashtable, were retrofitted to 
participate in the framework, so you don't have to abandon them to take advantage of the 
framework. 

The Collections Framework substantially reduces the amount of code necessary to do many 
mundane tasks. For example, suppose you have a vector of strings, and you want to sort it 
alphabetically. This one-liner does the job: 

 
Collections.sort(v); 

If you want to do the same thing ignoring case distinctions, use the following: 

 
Collections.sort(v, String.CASE_INSENSITIVE_ORDER); 

Suppose you want to print out all of the elements in an array. Many programmers use a for 
loop, but there's no need if you use the following idiom: 

 
System.out.println(Arrays.asList(a)); 



Effective Java: Programming Language Guide 

112 

Finally, suppose you want to know all of the keys for which two Hashtable instances, h1 and 
h2, contain the same mappings. Before the Collections Framework was added, this would 
have required a fair amount of code, but now it takes three lines: 

 
Map tmp = new HashMap(h1); 
tmp.entrySet().retainAll(h2.entrySet()); 
Set result = tmp.keySet(); 

The foregoing examples barely scratch the surface of what you can do with the Collections 
Framework. If you want to know more, see the documentation on Sun's Web site 
[Collections] or read the tutorial [Bloch99]. 

A third-party library worthy of note is Doug Lea's util.concurrent [Lea01], which 
provides high-level concurrency utilities to simplify the task of multithreaded programming. 

There are many additions to the libraries in the 1.4 release. Notable additions include the 
following: 

• java.util.regex—  A full-blown Perl-like regular expression facility. 
• java.util.prefs—  A facility for the persistent storage of user preferences and 

program configuration data. 
• java.nio—  A high-performance I/O facility, including scalable I/O (akin to the Unix 

poll call) and memory-mapped I/O (akin to the Unix mmap call). 
• java.util.LinkedHashSet, LinkedHashMap, IdentityHashMap—  New 

collection implementations. 

Occasionally, a library facility may fail to meet your needs. The more specialized your needs, 
the more likely this is to happen. While your first impulse should be to use the libraries, if 
you've looked at what they have to offer in some area and it doesn't meet your needs, use an 
alternate implementation. There will always be holes in the functionality provided by any 
finite set of libraries. If the functionality that you need is missing, you may have no choice but 
to implement it yourself. 

To summarize, don't reinvent the wheel. If you need to do something that seems reasonably 
common, there may already be a class in the libraries that does what you want. If there is, use 
it; if you don't know, check. Generally speaking, library code is likely to be better than code 
that you'd write yourself and is likely to improve over time. This is no reflection on your 
abilities as a programmer; economies of scale dictate that library code receives far more 
attention than the average developer could afford to devote to the same functionality. 

Item 31: Avoid float and double if exact answers are required 

The float and double types are designed primarily for scientific and engineering 
calculations. They perform binary floating-point arithmetic, which was carefully designed to 
furnish accurate approximations quickly over a broad range of magnitudes. They do not, 
however, provide exact results and should not be used where exact results are required. 
The float and double types are particularly ill-suited for monetary calculations because 
it is impossible to represent 0.1 (or any other negative power of ten) as a float or double 
exactly. 
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For example, suppose you have $1.03 in your pocket, and you spend 42. How much money 
do you have left? Here's a naive program fragment that attempts to answer this question: 

 
System.out.println(1.03 - .42); 

Unfortunately, it prints out 0.6100000000000001. This is not an isolated case. Suppose you 
have a dollar in your pocket, and you buy nine washers priced at ten cents each. How much 
change do you get? 

 
System.out.println(1.00 - 9*.10); 

According to this program fragment, you get $0.09999999999999995. You might think that 
the problem could be solved merely by rounding results prior to printing, but unfortunately 
this does not always work. For example, suppose you have a dollar in your pocket, and you 
see a shelf with a row of delicious candies priced at 10, 20, 30, and so forth, up to a dollar. 
You buy one of each candy, starting with the one that costs 10, until you can't afford to buy 
the next candy on the shelf. How many candies do you buy, and how much change do you 
get? Here's a naive program designed to solve this problem: 

 
// Broken - uses floating point for monetary calculation! 
public static void main(String[] args) { 
    double funds = 1.00; 
    int itemsBought = 0; 
    for (double price = .10; funds >= price; price += .10) { 
        funds -= price; 
        itemsBought++; 
    } 
    System.out.println(itemsBought + " items bought."); 
    System.out.println("Change: $" + funds); 
} 

If you run the program, you'll find that you can afford three pieces of candy, and you have 
$0.3999999999999999 left. This is the wrong answer! The right way to solve this problem is 
to use BigDecimal, int, or long for monetary calculations. Here's a straightforward 
transformation of the previous program to use the BigDecimal type in place of double: 

 
public static void main(String[] args) { 
    final BigDecimal TEN_CENTS = new BigDecimal(".10"); 
 
    int itemsBought = 0; 
    BigDecimal funds = new BigDecimal("1.00"); 
    for (BigDecimal price = TEN_CENTS; 
         funds.compareTo(price) >= 0; 
         price = price.add(TEN_CENTS)) { 
        itemsBought++; 
        funds = funds.subtract(price); 
    } 
    System.out.println(itemsBought + " items bought."); 
    System.out.println("Money left over: $" + funds); 
} 
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If you run the revised program, you'll find that you can afford four pieces of candy, with 
$0.00 left over. This is the correct answer. There are, however, two disadvantages to using 
BigDecimal: It's less convenient than using a primitive arithmetic type, and its slower. The 
latter disadvantage is irrelevant if you're solving a single short problem, but the former may 
annoy you. 

An alternative to using BigDecimal is to use int or long, depending on the amounts 
involved, and to keep track of the decimal point yourself. In this example, the obvious 
approach is to do all computation in pennies instead of dollars. Here's a straightforward 
transformation of the program just shown that takes this approach: 

 
public static void main(String[] args) { 
    int itemsBought = 0; 
    int funds = 100; 
    for (int price = 10; funds >= price; price += 10) { 
        itemsBought++; 
        funds -= price; 
    } 
    System.out.println(itemsBought + " items bought."); 
    System.out.println("Money left over: "+ funds + " cents"); 
} 

In summary, don't use float or double for any calculations that require an exact answer. Use 
BigDecimal if you want the system to keep track of the decimal point and you don't mind the 
inconvenience of not using a primitive type. Using BigDecimal has the added advantage that 
it gives you full control over rounding, letting you select from eight rounding modes 
whenever an operation that entails rounding is performed. This comes in handy if you're 
performing business calculations with legally mandated rounding behavior. If performance is 
of the essence, if you don't mind keeping track of the decimal point yourself, and if the 
quantities aren't too big, use int or long. If the quantities don't exceed nine decimal digits, 
you can use int; if they don't exceed eighteen digits, you can use long. If the quantities 
exceed eighteen digits, you must use BigDecimal. 

Item 32: Avoid strings where other types are more appropriate 

Strings are designed to represent text, and they do a fine job of it. Because strings are so 
common and so well supported by the language, there is a natural tendency to use strings for 
purposes other than those for which they were designed. This item discusses a few things that 
you shouldn't do with strings. 

Strings are poor substitutes for other value types.  When a piece of data comes into a 
program from a file, from the network, or from keyboard input, it is often in string form. 
There is a natural tendency to leave it that way, but this tendency is justified only if it really is 
textual in nature. If it's numeric, it should be translated into the appropriate numeric type, such 
as int, float, or BigInteger. If it's the answer to a yes-or-no question, it should be 
translated into a boolean. More generally, if there's an appropriate value type, whether 
primitive or object reference, you should use it; if there isn't, you should write one. While this 
advice may seem obvious, it is often violated. 

Strings are poor substitutes for enumerated types.  As discussed in Item 21, both typesafe 
enums and int values make far better enumerated type constants than strings. 
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Strings are poor substitutes for aggregate types.  If an entity has multiple components, it is 
usually a bad idea to represent it as a single string. For example, here's a line of code that 
comes from a real system—identifier names have been changed to protect the guilty: 

 
// Inappropriate use of string as aggregate type 
String compoundKey = className + "#" + i.next(); 

This approach has many disadvantages. If the character used to separate fields occurs in one 
of the fields, chaos may result. To access individual fields, you have to parse the string, which 
is slow, tedious, and error-prone. You can't provide equals, toString, or compareTo 
methods but are forced to accept the behavior that String provides. A better approach is 
simply to write a class to represent the aggregate, often a private static member class 
(Item 18). 

Strings are poor substitutes for capabilities.  Occasionally, strings are used to grant access 
to some functionality. For example, consider the design of a thread-local variable facility. 
Such a facility provides variables for which each thread has its own value. When confronted 
with designing such a facility several years ago, several people independently came up with 
the same design in which client-provided string keys grant access to the contents of a thread-
local variable: 

 
// Broken - inappropriate use of String as capability! 
public class ThreadLocal { 
    private ThreadLocal() { } // Noninstantiable 
 
    // Sets the current thread's value for the named variable. 
    public static void set(String key, Object value); 
 
    // Returns the current thread's value for the named variable. 
    public static Object get(String key); 
} 

The problem with this approach is that the keys represent a shared global namespace. If two 
independent clients of the package decide to use the same name for their thread-local variable, 
they unintentionally share the variable, which will generally cause both clients to fail. Also, 
the security is poor; a malicious client could intentionally use the same key as another client 
to gain illicit access to the other client's data. 

This API can be fixed by replacing the string with an unforgeable key (sometimes called a 
capability): 

 
public class ThreadLocal { 
    private ThreadLocal() { } // Noninstantiable 
 
    public static class Key { 
        Key() { } 
    } 
 
    // Generates a unique, unforgeable key 
    public static Key getKey() { 
        return new Key(); 
    } 
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    public static void set(Key key, Object value); 
    public static Object get(Key key); 
} 

While this solves both of the problems with the string-based API, you can do better. You don't 
really need the static methods any more. They can instead become instance methods on the 
key, at which point the key is no longer a key: it is a thread-local variable. At this point, the 
noninstantiable top-level class isn't doing anything for you any more, so you might as well get 
rid of it and rename the nested class to ThreadLocal: 

 
public class ThreadLocal { 
    public ThreadLocal() { } 
    public void set(Object value); 
    public Object get(); 
} 

This is, roughly speaking, the API that java.util.ThreadLocal provides. In addition to 
solving the problems with the string-based API, it's faster and more elegant than either of the 
key-based APIs. 

To summarize, avoid the natural tendency to represent objects as strings when better data 
types exist or can be written. Used inappropriately, strings are more cumbersome, less 
flexible, slower, and more error-prone than other types. Types for which strings are 
commonly misused include primitive types, enumerated types, and aggregate types. 

Item 33: Beware the performance of string concatenation 

The string concatenation operator (+) is a convenient way to combine a few strings into one. It 
is fine for generating a single line of output or for constructing the string representation of a 
small, fixed-size object, but it does not scale. Using the string concatenation operator 
repeatedly to concatenate n strings requires time quadratic in n. It is an unfortunate 
consequence of the fact that strings are immutable (Item 13). When two strings are 
concatenated, the contents of both are copied. 

For example, consider the following method that constructs a string representation of a billing 
statement by repeatedly concatenating a line for each item: 

 
// Inappropriate use of string concatenation - Performs horribly! 
public String statement() { 
    String s = ""; 
    for (int i = 0; i < numItems(); i++) 
        s += lineForItem(i);  // String concatenation 
    return s; 
} 

This method performs abysmally if the number of items is large. To achieve acceptable 
performance, use a StringBuffer in place of a String to store the statement under 
construction: 
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public String statement() { 
    StringBuffer s = new StringBuffer(numItems() * LINE_WIDTH); 
    for (int i = 0; i < numItems(); i++) 
        s.append(lineForItem(i)); 
    return s.toString(); 
} 

The difference in performance is dramatic. If numItems returns 100 and lineForItem returns 
a constant 80-character string, the second method is ninety times faster on my machine than 
the first. Because the first method is quadratic in the number of items and the second is linear, 
the performance difference is even more dramatic for larger numbers of items. Note that the 
second method preallocates a StringBuffer large enough to hold the result. Even if it is 
detuned to use a default-sized StringBuffer, it is still forty-five times faster than the first. 

The moral is simple: Don't use the string concatenation operator to combine more than a few 
strings unless performance is irrelevant. Use StringBuffer's append method instead. 
Alternatively, use a character array, or process the strings one at a time instead of combining 
them. 

Item 34: Refer to objects by their interfaces 

Item 25 contains the advice that you should use interfaces rather than classes as parameter 
types. More generally, you should favor the use of interfaces rather than classes to refer to 
objects. If appropriate interface types exist, parameters, return values, variables, and 
fields should all be declared using interface types. The only time you really need to refer to 
an object's class is when you're creating it. To make this concrete, consider the case of 
Vector, which is an implementation of the List interface. Get in the habit of typing this: 

 
// Good - uses interface as type 
List subscribers = new Vector(); 

rather than this: 

 
// Bad - uses class as type! 
Vector subscribers = new Vector(); 

If you get into the habit of using interfaces as types, your program will be much more 
flexible.  If you decide that you want to switch implementations, all you have to do is change 
the class name in the constructor (or use a different static factory). For example, the first 
declaration could be changed to read 

 
List subscribers = new ArrayList(); 

and all of the surrounding code would continue to work. The surrounding code was unaware 
of the old implementation type, so it would be oblivious to the change. 

There is one caveat: If the original implementation offered some special functionality not 
required by the general contract of the interface and the code depended on that functionality, 
then it is critical that the new implementation provide the same functionality. For example, if 
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the code surrounding the first declaration depended on the fact that Vector is synchronized, 
then it would be incorrect to substitute ArrayList for Vector in the declaration. 

So why would you want to change implementations? Because the new implementation offers 
better performance or because it offers desirable extra functionality. A real-world example 
concerns the ThreadLocal class. Internally, this class uses a package-private Map field in 
Thread to associate per-thread values with ThreadLocal instances. In the 1.3 release, this 
field was initialized to a HashMap instance. In the 1.4 release, a new, special-purpose Map 
implementation, called IdentityHashMap, was added to the platform. By changing a single 
line of code to initialize the field to an IdentityHashMap instead of a HashMap, the 
ThreadLocal facility was made faster. 

Had the field been declared as a HashMap instead of a Map, there is no guarantee that a single-
line change would have been sufficient. If the client code had used HashMap operations 
outside of the Map interface or passed the map to a method that demanded a HashMap, the code 
would no longer compile if the field were changed to an IdentityHashMap. Declaring the 
field with the interface type “keeps you honest.” 

It is entirely appropriate to refer to an object by a class rather than an interface if no 
appropriate interface exists.  For example, consider value classes, such as String and 
BigInteger. Value classes are rarely written with multiple implementations in mind. They 
are often final and rarely have corresponding interfaces. It is perfectly appropriate to use a 
value class as a parameter, variable, field, or return type. More generally, if a concrete class 
has no associated interface, then you have no choice but to refer to it by its class whether or 
not it represents a value. The Random class falls into this category. 

A second case in which there is no appropriate interface type is that of objects belonging to a 
framework whose fundamental types are classes rather than interfaces. If an object belongs to 
such a class-based framework, it is preferable to refer to it by the relevant base class, which is 
typically abstract, rather than by its implementation class. The java.util.TimerTask class 
falls into this category. 

A final case in which there is no appropriate interface type is that of classes that implement an 
interface but provide extra methods not found in the interface—for example, LinkedList. 
Such a class should be used only to refer to its instances if the program relies on the extra 
methods: it should never be used as a parameter type (Item 25). 

These cases are not meant to be exhaustive but merely to convey the flavor of situations 
where it is appropriate to refer to an object by its class. In practice, it should be apparent 
whether a given object has an appropriate interface. If it does, your program will be more 
flexible if you use the interface to refer to the object; if not, just use the highest class in the 
class hierarchy that provides the required functionality. 

Item 35: Prefer interfaces to reflection 

The reflection facility, java.lang.reflect, offers programmatic access to information about 
loaded classes. Given a Class instance, you can obtain Constructor, Method, and Field 
instances representing the constructors, methods, and fields of the class represented by the 
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Class instance. These objects provide programmatic access to the class's member names, 
field types, method signatures, and so on. 

Moreover, Constructor, Method, and Field instances let you manipulate their underlying 
counterparts reflectively: You can construct instances, invoke methods, and access fields of 
the underlying class by invoking methods on the Constructor, Field, and Method instances. 
For example, Method.invoke lets you invoke any method on any object of any class (subject 
to the usual security constraints). Reflection allows one class to use another, even if the latter 
class did not exist when the former was compiled. This power, however, comes at a price: 

• You lose all the benefits of compile-time type checking, including exception 
checking. If a program attempts to invoke a nonexistent or inaccessible method 
reflectively, it will fail at run time unless you've taken special precautions. 

• The code required to perform reflective access is clumsy and verbose. It is tedious 
to write and difficult to read. 

• Performance suffers. As of release 1.3, reflective method invocation was forty times 
slower on my machine than normal method invocation. Reflection was rearchitected in 
release 1.4 for greatly improved performance, but it is still twice as slow as normal 
access, and the gap is unlikely to narrow. 

The reflection facility was originally designed for component-based application builder tools. 
Such tools generally load classes on demand and use reflection to find out what methods and 
constructors they support. The tools let their users interactively construct applications that 
access these classes, but the generated applications access the classes normally, not 
reflectively. Reflection is used only at design time. As a rule, objects should not be accessed 
reflectively in normal applications at run time. 

There are a few sophisticated applications that demand the use of reflection. Examples 
include class browsers, object inspectors, code analysis tools, and interpretive embedded 
systems. Reflection is also appropriate for use in RPC systems to eliminate the need for stub 
compilers. If you have any doubts as to whether your application falls into one of these 
categories, it probably doesn't. 

You can obtain many of the benefits of reflection while incurring few of its costs by 
using it only in a very limited form.  For many programs that must use a class unavailable at 
compile time, there exists at compile time an appropriate interface or superclass by which to 
refer to the class (Item 34). If this is the case, you can create instances reflectively and 
access them normally via their interface or superclass. If the appropriate constructor has 
no parameters, as is usually the case, then you don't even need to use the java.lang.reflect 
package; the Class.newInstance method provides the required functionality. 

For example, here's a program that creates a Set instance whose class is specified by the first 
command line argument. The program inserts the remaining command line arguments into the 
set and prints it. Regardless of the first argument, the program prints the remaining arguments 
with duplicates eliminated. The order in which these arguments are printed depends on the 
class specified in the first argument. If you specify “java.util.HashSet,” they're printed in 
apparently random order; if you specify “java.util.TreeSet,” they're printed in 
alphabetical order, as the elements in a TreeSet are sorted: 
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// Reflective instantiation with interface access 
public static void main(String[] args) { 
    // Translate the class name into a class object 
    Class cl = null; 
    try { 
        cl = Class.forName(args[0]); 
    } catch(ClassNotFoundException e) { 
        System.err.println("Class not found."); 
        System.exit(1); 
    } 
 
    // Instantiate the class 
    Set s = null; 
    try { 
        s = (Set) cl.newInstance(); 
    } catch(IllegalAccessException e) { 
        System.err.println("Class not accessible."); 
        System.exit(1); 
    } catch(InstantiationException e) { 
        System.err.println("Class not instantiable."); 
        System.exit(1); 
    } 
 
    // Exercise the set 
    s.addAll(Arrays.asList(args).subList(1, args.length-1)); 
    System.out.println(s); 
} 

While this program is just a toy, the technique that it demonstrates is very powerful. The toy 
program could easily be turned into a generic set tester that validates the specified Set 
implementation by aggressively manipulating one or more instances and checking that they 
obey the Set contract. Similarly, it could be turned into a generic set performance analysis 
tool. In fact, the technique that it demonstrates is sufficient to implement a full-blown service 
provider framework (Item 1). Most of the time, this technique is all that you need in the way 
of reflection. 

You can see two disadvantages of reflection in the example. First, the example is capable of 
generating three run-time errors, all of which would have been compile-time errors if 
reflective instantiation were not used. Second, it takes twenty lines of tedious code to generate 
an instance of the class from its name, whereas a constructor invocation would fit neatly on a 
single line. These disadvantages are, however, restricted to the part of the program that 
instantiates the object. Once instantiated, it is indistinguishable from any other Set instance. 
In a real program, the great bulk of the code is thus unaffected by this limited use of 
reflection. 

A legitimate, if rare, use of reflection is to break a class's dependencies on other classes, 
methods, or fields that may be absent at run time. This can be useful if you are writing a 
package that must run against multiple versions of some other package. The technique is to 
compile your package against the minimal environment required to support it, typically the 
oldest version, and to access any newer classes or methods reflectively. To make this work, 
you have to take appropriate action if a newer class or method that you are attempting to 
access does not exist at run time. Appropriate action might consist of using some alternate 
means to accomplish the same goal or operating with reduced functionality. 
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In summary, reflection is a powerful facility that is required for certain sophisticated system 
programming tasks, but it has many disadvantages. If you are writing a program that has to 
work with classes unknown at compile time you should, if at all possible, use reflection only 
to instantiate objects and access the objects using some interface or superclass that is known 
at compile time. 

Item 36: Use native methods judiciously 

The Java Native Interface (JNI) allows Java applications to call native methods, which are 
special methods written in native programming languages such as C or C++. Native methods 
can perform arbitrary computation in native languages before returning to the Java 
programming language. 

Historically, native methods have had three main uses. They provided access to platform-
specific facilities such as registries and file locks. They provided access to libraries of legacy 
code, which could in turn provide access to legacy data. Finally, native methods were used to 
write performance-critical parts of applications in native languages for improved 
performance. 

It is legitimate to use native methods to access platform-specific facilities, but as the Java 
platform matures, it provides more and more features previously found only in host platforms. 
For example, the java.util.prefs package, added in release 1.4, offers the functionality of 
a registry. It is also legitimate to use native methods to access legacy code, but there are better 
ways to access some legacy code. For example, the JDBC API provides access to legacy 
databases. 

As of release 1.3, it is rarely advisable to use native methods for improved performance.  
In early releases, it was often necessary, but JVM implementations have gotten much faster. 
For most tasks, it is now possible to obtain comparable performance without resorting to 
native methods. By way of example, when java.math was added to the platform in release 
1.1, BigInteger was implemented atop a fast multiprecision arithmetic library written in C. 
At the time, this was necessary for adequate performance. In release 1.3, BigInteger was 
rewritten entirely in Java and carefully tuned. The new version is faster than the original on all 
of Sun's 1.3 JVM implementations for most operations and operand sizes. 

The use of native methods has serious disadvantages. Because native languages are not safe 
(Item 24), applications using native methods are no longer immune to memory corruption 
errors. Because native languages are platform dependent, applications using native methods 
are no longer freely portable. Native code must be recompiled for each target platform and 
may require modification as well. There is a high fixed cost associated with going into and out 
of native code, so native methods can decrease performance if they do only a small amount of 
work. Finally, native methods are tedious to write and difficult to read. 

In summary, think twice before using native methods. Rarely, if ever, use them for improved 
performance. If you must use native methods to access low-level resources or legacy libraries, 
use as little native code as possible and test it thoroughly. A single bug in the native code can 
corrupt your entire application. 
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Item 37: Optimize judiciously 

There are three aphorisms concerning optimization that everyone should know. They are 
perhaps beginning to suffer from overexposure, but in case you aren't yet familiar with them, 
here they are: 

More computing sins are committed in the name of efficiency (without 
necessarily achieving it) than for any other single reason—including blind 
stupidity. 

——William A. Wulf [Wulf72] 

We should forget about small efficiencies, say about 97% of the time: 
premature optimization is the root of all evil. 

——Donald E. Knuth [Knuth74] 

We follow two rules in the matter of optimization: 

Rule 1. Don't do it. 

Rule 2 (for experts only). Don't do it yet—that is, not until you have a perfectly 
clear and unoptimized solution. 

——M. A. Jackson [Jackson75] 

All of these aphorisms predate the Java programming language by two decades. They tell a 
deep truth about optimization: It is easy to do more harm than good, especially if you 
optimize prematurely. In the process, you may produce software that is neither fast nor correct 
and cannot easily be fixed. 

Don't sacrifice sound architectural principles for performance. Strive to write good 
programs rather than fast ones. If a good program is not fast enough, its architecture will 
allow it to be optimized. Good programs embody the principle of information hiding: Where 
possible, they localize design decisions within individual modules, so individual decisions can 
be changed without affecting the remainder of the system (Item 12). 

This does not mean that you can ignore performance concerns until your program is complete. 
Implementation problems can be fixed by later optimization, but pervasive architectural flaws 
that limit performance can be nearly impossible to fix without rewriting the system. Changing 
a fundamental facet of your design after the fact can result in an ill-structured system that is 
difficult to maintain and evolve. Therefore you should think about performance during the 
design process. 

Strive to avoid design decisions that limit performance.  The components of a design that 
are most difficult to change after the fact are those specifying interactions between modules 
and with the outside world. Chief among these design components are APIs, wire-level 
protocols, and persistent data formats. Not only are these design components difficult or 
impossible to change after the fact, but all of them can place significant limitations on the 
performance that a system can ever achieve. 
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Consider the performance consequences of your API design decisions.  Making a public 
type mutable may require a lot of needless defensive copying (Item 24). Similarly, using 
inheritance in a public class where composition would have been appropriate ties the class 
forever to its superclass, which can place artificial limits on the performance of the subclass 
(Item 14). As a final example, using an implementation type rather than an interface in an API 
ties you to a specific implementation, even though faster implementations may be written in 
the future (Item 34). 

The effects of API design on performance are very real. Consider the getSize method in 
the java.awt.Component class. The decision that this performance-critical method was to 
return a Dimension instance, coupled with the decision that Dimension instances are mutable, 
forces any implementation of this method to allocate a new Dimension instance on every 
invocation. Even though, as of release 1.3, allocating small objects is relatively inexpensive, 
allocating millions of objects needlessly can do real harm to performance. 

In this case, several alternatives existed. Ideally, Dimension should have been immutable 
(Item 13); alternatively, the getSize method could have been replaced by two methods 
returning the individual primitive components of a Dimension object. In fact, two such 
methods were added to the Component API in the 1.2 release for performance reasons. 
Preexisting client code, however, still uses the getSize method and still suffers the 
performance consequences of the original API design decisions. 

Luckily, it is generally the case that good API design is consistent with good performance. It 
is a very bad idea to warp an API to achieve good performance. The performance issue 
that caused you to warp the API may go away in a future release of the platform or other 
underlying software, but the warped API and the support headaches that it causes will be with 
you for life. 

Once you've carefully designed your program and produced a clear, concise, and well-
structured implementation, then it may be time to consider optimization, assuming you're not 
already satisfied with the performance of the program. Recall that Jackson's two rules of 
optimization were “Don't do it,” and “(for experts only). Don't do it yet.” He could have 
added one more: Measure performance before and after each attempted optimization. 

You may be surprised by what you find. Often attempted optimizations have no measurable 
effect on performance; sometimes they make it worse. The main reason is that it's difficult to 
guess where your program is spending its time. The part of the program that you think is slow 
may not be at fault, in which case you'd be wasting your time trying to optimize it. Common 
wisdom reveals that programs spend 80 percent of their time in 20 percent of their code. 

Profiling tools can help you decide where to focus your optimization efforts. Such tools give 
you run-time information such as roughly how much time each method is consuming and how 
many times it is invoked. In addition to focusing your tuning efforts, this can alert you to the 
need for algorithmic changes. If a quadratic (or worse) algorithm lurks inside your program, 
no amount of tuning will fix the problem. You must replace the algorithm with one that's 
more efficient. The more code in the system, the more important it is to use a profiler. It's like 
looking for a needle in a haystack: The bigger the haystack, the more useful it is to have a 
metal detector. The Java 2 SDK comes with a simple profiler, and several more sophisticated 
profiling tools are available commercially. 
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The need to measure the effects of optimization is even greater on the Java platform than on 
more traditional platforms, as the Java programming language does not have a strong 
performance model. The relative costs of the various primitive operations are not well 
defined. The “semantic gap” between what the programmer writes and what the CPU 
executes is far greater than in traditional compiled languages which makes it very difficult to 
reliably predict the performance consequences of any optimization. There are plenty of 
performance myths floating around that turn out to be half-truths or outright lies. 

Not only is the performance model ill-defined, but it varies from JVM implementation to 
JVM implementation and from release to release. If you will be running your program on 
multiple JVM implementations, it is important that you measure the effects of your 
optimization on each. Occasionally you may be forced to make trade-offs between 
performance on different JVM implementations. 

To summarize, do not strive to write fast programs—strive to write good ones; speed will 
follow. Do think about performance issues while you're designing systems and especially 
while you're designing APIs, wire-level protocols, and persistent data formats. When you've 
finished building the system, measure its performance. If it's fast enough, you're done. If not, 
locate the source of the problems with the aid of a profiler, and go to work optimizing the 
relevant parts of the system. The first step is to examine your choice of algorithms: No 
amount of low-level optimization can make up for a poor choice of algorithm. Repeat this 
process as necessary, measuring the performance after every change, until you're satisfied. 

Item 38: Adhere to generally accepted naming conventions 

The Java platform has a well-established set of naming conventions, many of which are 
contained in The Java Language Specification [JLS, 6.8]. Loosely speaking, naming 
conventions fall into two categories: typographical and grammatical. 

There are only a handful of typographical naming conventions, covering packages, classes, 
interfaces, methods, and fields. You should rarely violate them and never without a very good 
reason. If an API violates these conventions, it may be difficult to use. If an implementation 
violates them, it may be difficult to maintain. In both cases, violations have the potential to 
confuse and irritate other programmers who work with the code and can cause faulty 
assumptions that lead to errors. The conventions are summarized in this item. 

Package names should be hierarchical with the parts separated by periods. Parts should 
consist of lowercase alphabetic characters and, rarely, digits. The name of any package that 
will be used outside your organization should begin with your organization's Internet domain 
name with the top-level domain first, for example, edu.cmu, com.sun, gov.nsa. The standard 
libraries and optional packages, whose names begin with java and javax, are exceptions to 
this rule. Users must not create packages whose names begin with java or javax. Detailed 
rules for converting Internet domain names to package name prefixes can be found in The 
Java Language Specification [JLS, 7.7]. 

The remainder of a package name should consist of one or more parts describing the package. 
Parts should be short, generally eight or fewer characters. Meaningful abbreviations are 
encouraged, for example, util rather than utilities. Acronyms are acceptable, for 
example, awt. Parts should generally consist of a single word or abbreviation. 
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Many packages have names with just one part in addition to the internet domain name. 
Additional parts are appropriate for large facilities whose size demands that they be broken up 
into an informal hierarchy. For example, the javax.swing package has a rich hierarchy of 
packages with names such as javax.swing.plaf.metal. Such packages are often referred to 
as subpackages, although they are subpackages by convention only; there is no linguistic 
support for package hierarchies. 

Class and interface names should consist of one or more words, with the first letter of each 
word capitalized, for example, Timer or TimerTask. Abbreviations are to be avoided, except 
for acronyms and certain common abbreviations like max and min. There is little consensus as 
to whether acronyms should be uppercase or have only their first letter capitalized. While 
uppercase is more common, a strong argument can be made in favor of capitalizing only the 
first letter. Even if multiple acronyms occur back-to-back, you can still tell where one word 
starts and the next word ends. Which class name would you rather see, HTTPURL or HttpUrl? 

Method and field names follow the same typographical conventions as class and interface 
names, except that the first letter of a method or field name should be lowercase, for example, 
remove, ensureCapacity. If an acronym occurs as the first word of a method or field name, 
it should be lowercase. 

The sole exception to the previous rule concerns “constant fields,” whose names should 
consist of one or more uppercase words separated by the underscore character, for example, 
VALUES or NEGATIVE_INFINITY. A constant field is a static final field whose value is 
immutable. If a static final field has a primitive type or an immutable reference type 
(Item 13), then it is a constant field. If the type is potentially mutable, it can still be a constant 
field if the referenced object is immutable. For example, a typesafe enum can export its 
universe of enumeration constants in an immutable List constant (page 107). Note that 
constant fields constitute the only recommended use of underscores. 

Local variable names have similar typographical naming conventions to member names, 
except that abbreviations are permitted, as are individual characters and short sequences of 
characters whose meaning depends on the context in which the local variable occurs, for 
example, i, xref, houseNumber. 

For quick reference, Table 7.1 shows examples of typographical conventions. 

Table 7.1. : Examples of Typographical Conventions 
Identifier Type  Examples  
Package com.sun.medialib, com.sun.jdi.event  
Class or Interface Timer, TimerTask, KeyFactorySpi, HttpServlet  
Method or Field remove, ensureCapacity, getCrc  
Constant Field VALUES, NEGATIVE_INFINITY  
Local Variable i, xref, houseNumber  

The grammatical naming conventions are more flexible and more controversial than 
the typographical conventions. There are no grammatical naming conventions to speak of for 
packages. Classes are generally named with a noun or noun phrase, for example, Timer or 
BufferedWriter. Interfaces are named like classes, for example, Collection or 
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Comparator, or with an adjective ending in “-able” or “-ible,” for example, Runnable or 
Accessible. 

Methods that perform some action are generally named with a verb or verb phrase, for 
example, append or drawImage. Methods that return a boolean value usually have names that 
begin with the word “is,” followed by a noun, a noun phrase, or any word or phrase that 
functions as an adjective, for example, isDigit, isProbablePrime, isEmpty, isEnabled, 
isRunning. 

Methods that return a nonboolean function or attribute of the object on which they're invoked 
are usually named with a noun, a noun phrase, or a verb phrase beginning with the verb “get,” 
for example, size, hashCode, or getTime. There is a vocal contingent that claims only the 
third form (beginning with “get”) is acceptable, but there is no basis for this claim. The first 
two forms usually lead to more readable code, for example, 

 
if (car.speed() > 2 * SPEED_LIMIT) 
    generateAudibleAlert("Watch out for cops!"); 

The form beginning with “get” is mandatory if the class containing the method is a Bean 
[JavaBeans], and it's advisable if you're considering turning the class into a Bean at a later 
time. Also, there is strong precedent for this form if the class contains a method to set the 
same attribute. In this case, the two methods should be named getAttribute and setAttribute. 

A few method names deserve special mention. Methods that convert the type of an object, 
returning an independent object of a different type, are often called toType, for example, 
toString, toArray. Methods that return a view (Item 4) whose type differs from that of 
the receiving object, are often called asType, for example, asList. Methods that return 
a primitive with the same value as the object on which they're invoked are often called 
typeValue, for example, intValue. Common names for static factories are valueOf and 
getInstance (Item 1). 

Grammatical conventions for field names are less well established and less important than 
those for class, interface, and method names, as well-designed APIs contain few if any 
exposed fields. Fields of type boolean are typically named like boolean accessor methods 
with the initial “is” omitted, for example, initialized, composite. Fields of other types are 
usually named with nouns or noun phrases, such as height, digits, or bodyStyle. 
Grammatical conventions for local variables are similar to those for fields but are even 
weaker. 

To summarize, internalize the standard naming conventions and learn to use them as second 
nature. The typographical conventions are straightforward and largely unambiguous; 
the grammatical conventions are more complex and looser. To quote from The Java 
Language Specification [JLS, 6.8], “These conventions should not be followed slavishly if 
long-held conventional usage dictates otherwise.” Use common sense. 
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Chapter 8. Exceptions 
When used to best advantage, exceptions can improve a program's readability, reliability, and 
maintainability. When used improperly, they can have the opposite effect. This chapter 
provides guidelines for using exceptions effectively. 

Item 39:Use exceptions only for exceptional conditions 

Someday, if you are unlucky, you may stumble across a piece of code that looks something 
like this: 

 
// Horrible abuse of exceptions. Don't ever do this! 
try { 
    int i = 0; 
    while(true) 
        a[i++].f(); 
} catch(ArrayIndexOutOfBoundsException e) { 
} 

What does this code do? It's not at all obvious from inspection, and that's reason enough not to 
use it. It turns out to be a horribly ill-conceived idiom for looping through the elements of 
an array. The infinite loop terminates by throwing, catching, and ignoring 
an ArrayIndexOutOfBoundsException when it attempts to access the first array element 
outside the bounds of the array. It's supposed to be equivalent to the standard idiom for 
looping through an array, instantly recognizable to any Java programmer: 

 
for (int i = 0; i < a.length; i++) 
    a[i].f(); 

So why would anyone use the exception-based idiom in preference to the tried and true? It's 
a misguided attempt to improve performance based on the faulty reasoning that, since the VM 
checks the bounds of all array accesses, the normal loop termination test (i < a.length) is 
redundant and should be avoided. There are three things wrong with this reasoning: 

• Because exceptions are designed for use under exceptional circumstances, few, if any, 
JVM implementations attempt to optimize their performance. It is generally expensive 
to create, throw, and catch an exception. 

• Placing code inside a try-catch block precludes certain optimizations that modern 
JVM implementations might otherwise perform. 

• The standard idiom for looping through an array does not necessarily result in 
redundant checks; some modern JVM implementations optimize them away. 

In fact, the exception-based idiom is far slower than the standard one on virtually all current 
JVM implementations. On my machine, the exception-based idiom runs seventy times slower 
than the standard one when looping from 0 to 99. 

Not only does the exception-based looping idiom obfuscate the purpose of the code and 
reduce its performance, but it's not guaranteed to work. In the presence of an unrelated bug, 
the idiom can fail silently and mask the bug, greatly complicating the debugging process. 
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Suppose the computation in the body of the loop contains a bug that results in an out-of-
bounds access to some unrelated array. If a reasonable loop idiom were used, the bug would 
generate an uncaught exception, resulting in immediate thread termination with an appropriate 
error message. If the evil exception-based looping idiom were used, the bug-related exception 
would be caught and misinterpreted as a normal loop termination. 

The moral of this story is simple: Exceptions are, as their name implies, to be used only 
for exceptional conditions; they should never be used for ordinary control flow. More 
generally, you should use standard, easily recognizable idioms in preference to overly clever 
ones that are purported to offer better performance. Even if the performance advantage is real, 
it may not remain in the face of steadily improving JVM implementations. The subtle bugs 
and maintenance headaches that come from overly clever idioms, however, are sure to 
remain. 

This principle also has implications for API design. A well-designed API must not force its 
client to use exceptions for ordinary control flow. A class with a “state-dependent” method 
that can be invoked only under certain unpredictable conditions should generally have a 
separate “state-testing” method indicating whether it is appropriate to invoke the first method. 
For example, the Iterator class has the state-dependent next method, which returns the next 
element in the iteration, and the corresponding state-testing method hasNext. This enables the 
standard idiom for iterating over a collection: 

 
for (Iterator i = collection.iterator(); i.hasNext(); ) { 
    Foo foo = (Foo) i.next(); 
    ... 
} 

If Iterator lacked the hasNext method, the client would be forced to do the following 
instead: 

 
// Do not use this hideous idiom for iteration over a collection! 
try { 
    Iterator i = collection.iterator(); 
    while(true) { 
        Foo foo = (Foo) i.next();         
        ... 
    } 
} catch (NoSuchElementException e) { 
} 

This should look very familiar after the array iteration example that began this item. Besides 
being wordy and misleading, the exception-based idiom is likely to perform significantly 
worse than the standard one and can mask bugs in unrelated parts of the system. 

An alternative to providing a separate state-testing method is to have the state-dependent 
method return a distinguished value, such as null, if it is invoked with the object in an 
inappropriate state. This technique would not be appropriate for Iterator, as null is a 
legitimate return value for the next method. 

Here are some guidelines to help you choose between a state-testing method and a 
distinguished return value. If an object is to be accessed concurrently without external 
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synchronization or is subject to externally induced state transitions, it may be essential to use 
a distinguished return value, as the object's state could change in the interval between the 
invocation of a state-testing method and its corresponding state-dependent method. 
Performance concerns may dictate that a distinguished return value be used if a separate state-
testing method would, of necessity, duplicate the work of the state-dependent method. All 
other things being equal, however, a state-testing method is mildly preferable to a 
distinguished return value. It offers slightly better readability, and inappropriate use is likely 
to be easier to detect and correct. 

Item 40:Use checked exceptions for recoverable conditions and     
run-time exceptions for programming errors 

The Java programming language provides three kinds of throwables: checked exceptions, run-
time exceptions, and errors. There is some confusion among programmers as to when each 
kind of throwable is appropriate. While the decision is not always clear-cut, there are some 
general rules that go a long way toward easing the choice. 

The cardinal rule in deciding whether to use a checked or unchecked exception is: Use 
checked exceptions for conditions from which the caller can reasonably be expected to 
recover. By throwing a checked exception, you force the caller to handle the exception in a 
catch clause or to propagate it outward. Each checked exception that a method is declared to 
throw is thus a potent indication to the API user that the associated condition is a possible 
outcome of invoking the method. 

By confronting the API user with a checked exception, the API designer presents a mandate 
to recover from the condition. The user can disregard this mandate by catching the exception 
and ignoring it, but this is usually a bad idea (Item 47). 

There are two kinds of unchecked throwables: run-time exceptions and errors. They are 
identical in their behavior: Both are throwables that needn't, and generally shouldn't, be 
caught. If a program throws an unchecked exception or an error, it is generally the case that 
recovery is impossible and continued execution would do more harm than good. If a program 
does not catch such a throwable, it will cause the current thread to halt with an appropriate 
error message. 

Use run-time exceptions to indicate programming errors.  The great majority of run-time 
exceptions indicate precondition violations. A precondition violation is simply a failure by the 
client of an API to adhere to the contract established by the API specification. For example, 
the contract for array access specifies that the array index must be between zero and the array 
length minus one. ArrayIndexOutOfBoundsException indicates that this precondition was 
violated. 

While the JLS does not require it, there is a strong convention that errors are reserved for use 
by the JVM to indicate resource deficiencies, invariant failures, or other conditions that make 
it impossible to continue execution [Chan98, Horstman00]. Given the almost universal 
acceptance of this convention, it's best not to implement any new Error subclasses. All of the 
unchecked throwables you implement should subclass RuntimeException (directly or 
indirectly). 
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It is possible to define a throwable that is not a subclass of Exception, RuntimeException, 
or Error. The JLS does not address such throwables directly, but specifies implicitly that they 
are behaviorally identical to ordinary checked exceptions (which are subclasses of Exception 
but not RuntimeException). So when should you use such a beast? In a word, never. It has 
no benefits over an ordinary checked exceptionality would serve merely to confuse the user of 
your API. 

To summarize, use checked exceptions for recoverable conditions and run-time exceptions for 
programming errors. Of course, the situation is not always black and white. For example, 
consider the case of resource exhaustion, which can be caused by a programming error such 
as allocating an unreasonably large array or by a genuine shortage of resources. If resource 
exhaustion is caused by a temporary shortage or by temporarily heightened demand, the 
condition may well be recoverable. It is a matter of judgment on the part of the API designer 
whether a given instance of resource exhaustion is likely to allow for recovery. If you believe 
a condition is likely to allow for recovery, use a checked exception; if not, use a run-time 
exception. If it isn't clear whether recovery is possible, you're probably better off using an 
unchecked exception, for reasons discussed in Item 41. 

API designers often forget that exceptions are full-fledged objects on which arbitrary methods 
can be defined. The primary use of such methods is to provide the code that catches the 
exception with additional information concerning the condition that caused the exception to 
be thrown. In the absence of such methods, programmers have been known to parse the string 
representation of an exception to ferret out additional information. This is extremely bad 
practice. Classes seldom specify the details of their string representations; thus string 
representations may differ from implementation to implementation and release to release. 
Therefore code that parses the string representation of an exception is likely to be nonportable 
and fragile. 

Because checked exceptions generally indicate recoverable conditions, it's especially 
important for such exceptions to provide methods that furnish information that could help the 
caller to recover. For example, suppose a checked exception is thrown when an attempt to 
make a call on a pay phone fails because the caller has not deposited a sufficient quantity of 
money. The exception should provide an accessor method to query the amount of the shortfall 
so the amount can be relayed to the user of the phone. 

Item 41:Avoid unnecessary use of checked exceptions 

Checked exceptions are a wonderful feature of the Java programming language. Unlike return 
codes, they force the programmer to deal with exceptional conditions, greatly enhancing 
reliability. That said, overuse of checked exceptions can make an API far less pleasant to use. 
If a method throws one or more checked exceptions, the code that invokes the method must 
handle the exceptions in one or more catch blocks, or it must declare that it throws the 
exceptions and let them propagate outward. Either way, it places a nontrivial burden on the 
programmer. 

The burden is justified if the exceptional condition cannot be prevented by proper use of the 
API and the programmer using the API can take some useful action once confronted with the 
exception. Unless both of these conditions hold, an unchecked exception is more appropriate. 
As a litmus test, ask yourself how the programmer will handle the exception. Is this the best 
that can be done? 
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} catch(TheCheckedException e) { 
    throw new Error("Assertion error"); // Should never happen! 
} 

How about this? 

 
} catch(TheCheckedException e) { 
    e.printStackTrace();        // Oh well, we lose. 
    System.exit(1); 
} 

If the programmer using the API can do no better, an unchecked exception would be more 
appropriate. One example of an exception that fails this test is 
CloneNotSupportedException. It is thrown by Object.clone, which should be invoked 
only on objects that implement Cloneable (Item 10). In practice, the catch block almost 
always has the character of an assertion failure. The checked nature of the exception provides 
no benefit to the programmer, but it requires effort and complicates programs. 

The additional burden on the programmer caused by a checked exception is substantially 
higher if it is the sole checked exception thrown by a method. If there are others, the method 
must already appear in a try block, and this exception merely requires another catch block. 
If a method throws a single checked exception, this exception alone is responsible for the fact 
that the method must appear in a try block. Under these circumstances, it pays to ask yourself 
whether there isn't some way to avoid the checked exception. 

One technique for turning a checked exception into an unchecked exception is to break the 
method that throws the exception into two methods, the first of which returns a boolean 
indicating whether the exception would be thrown. This API transformation transforms the 
calling sequence from this: 

 
// Invocation with checked exception 
try { 
    obj.action(args); 
} catch(TheCheckedException e) { 
    // Handle exceptional condition 
    ... 
} 

to this: 

 
// Invocation with state-testing method and unchecked exception 
if (obj.actionPermitted(args)) { 
    obj.action(args); 
} else { 
    // Handle exceptional condition 
    ... 
} 

This transformation is not always appropriate, but where it is appropriate it can make an API 
more pleasant to use. While the latter calling sequence is no prettier than the former, the 
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resulting API is more flexible. In cases where the programmer knows the call will succeed or 
is content to let the thread terminate if the call fails, the transformation also allows this simple 
calling sequence: 

 
obj.action(args); 

If you suspect that the simple calling sequence will be the norm, then this API transformation 
may be appropriate. The API resulting from this transformation is essentially identical to the 
“state-testing method” API in Item 39 and the same caveats apply: If an object is to be 
accessed concurrently without external synchronization or it is subject to externally induced 
state transitions, this transformation is inappropriate, as the object's state may change between 
the invocations of actionPermitted and action. If a separate actionPermitted method 
would, of necessity, duplicate the work of the action method, the transformation may be 
ruled out by performance concerns. 

Item 42:Favor the use of standard exceptions 

One of the attributes that most strongly distinguishes expert programmers from less 
experienced ones is that experts strive for and usually achieve a high degree of code reuse. 
Exceptions are no exception to the general rule that code reuse is good. The Java platform 
libraries provide a basic set of unchecked exceptions that cover a large fraction of the 
exception-throwing needs of most APIs. In this item, we'll discuss these commonly reused 
exceptions. 

Reusing preexisting exceptions has several benefits. Chief among these, it makes your API 
easier to learn and use because it matches established conventions with which programmers 
are already familiar. A close second is that programs using your API are easier to read 
because they aren't cluttered with unfamiliar exceptions. Finally, fewer exception classes 
mean a smaller memory footprint and less time spent loading classes. 

The most commonly reused exception is IllegalArgumentException. This is generally 
the exception to throw when the caller passes in an argument whose value is inappropriate. 
For example, this would be the exception to throw if the caller passed a negative number in 
a parameter representing the number of times some action were to be repeated. 

Another commonly reused exception is IllegalStateException. This is generally 
the exception to throw if the invocation is illegal, given the state of the receiving object. For 
example, this would be the exception to throw if the caller attempted to use some object 
before it had been properly initialized. 

Arguably, all erroneous method invocations boil down to an illegal argument or illegal state, 
but other exceptions are standardly used for certain kinds of illegal arguments and states. If 
a caller passes null in some parameter for which null values are prohibited, convention 
dictates that NullPointerException be thrown rather than IllegalArgumentException. 
Similarly, if a caller passes an out-of-range value in a parameter representing an index into a 
sequence, IndexOutOfBoundsException should be thrown rather than 
IllegalArgumentException. 
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Another general-purpose exception worth knowing about is 
ConcurrentModificationException. This exception should be thrown if an object designed 
for use by a single thread or with external synchronization detects that it is being (or has been) 
concurrently modified. 

A last general-purpose exception worthy of note is UnsupportedOperationException. This 
is the exception to throw if an object does not support an attempted operation. Its use is rare 
compared to that of other exceptions discussed in this item, as most objects support all the 
methods they implement. This exception is used by implementations of interfaces that fail to 
implement one or more optional operations defined by the interface. For example, an append-
only List implementation would throw this exception if someone tried to delete an element. 

Table 8.1 summarizes the most commonly reused exceptions. 

Table 8.1. Commonly Used Exceptions 
Exception  Occasion for Use  
IllegalArgumentException  Parameter value is inappropriate 
IllegalStateException  Object state is inappropriate for method invocation 
NullPointerException  Parameter value is null where prohibited 
IndexOutOfBoundsException  Index parameter value is out of range 
ConcurrentModificationException Concurrent modification of object has been detected where 

prohibited 
UnsupportedOperationException  Object does not support method 

While these are by far are the most commonly reused exceptions in the Java platform 
libraries, other exceptions may be reused where circumstances warrant. For example, it would 
be appropriate to reuse ArithmeticException and NumberFormatException if you were 
implementing arithmetic objects like complex numbers or matrices. If an exception fits your 
needs, go ahead and use it, but only if the conditions under which you would throw it are 
consistent with the exception's documentation. Reuse must be based on semantics, not just on 
name. Also, feel free to subclass an existing exception if you want to add a bit more      
failure-capture information (Item 45). 

Finally, be aware that choosing which exception to reuse is not always an exact science, as 
the “occasions for use” in the Table 8.1 are not mutually exclusive. Consider, for example, 
the case of an object representing a deck of cards. Suppose there were a method to deal a hand 
from the deck that took as an argument the size of the hand. Suppose the caller passed in this 
parameter a value that was larger than the number of cards remaining in the deck. This could 
be construed as an IllegalArgumentException (the handSize parameter value is too high) 
or an IllegalStateException (the deck object contains too few cards for the request). In 
this case the IllegalArgumentException feels right, but there are no hard-and-fast rules. 

Item 43: Throw exceptions appropriate to the abstraction 

It is disconcerting when a method throws an exception that has no apparent connection to 
the task that it performs. This often happens when a method propagates an exception thrown 
by a lower-level abstraction. Besides being disconcerting, this pollutes the API of the higher 
layer with implementation details. If the implementation of the higher layer is changed in 
a subsequent release, the exceptions that it throws may change as well, potentially breaking 
existing client programs. 
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To avoid this problem, higher layers should catch lower-level exceptions and, in their 
place, throw exceptions that are explainable in terms of the higher-level abstraction. 
This idiom, which we call exception translation, looks like this: 

 
// Exception Translation 
try { 
    // Use lower-level abstraction to do our bidding 
    ... 
} catch(LowerLevelException e) { 
    throw new HigherLevelException(...); 
} 

Here is an example of exception transaction taken from the AbstractSequentialList class, 
which is a skeletal implementation (Item 16) of the List interface. In this example, exception 
translation is mandated by the specification of the get method in the List interface: 

 
/** 
 * Returns the element at the specified position in this list. 
 * @throws IndexOutOfBoundsException if the index is out of range 
 *         (index < 0 || index >= size()). 
 */ 
public Object get(int index) { 
    ListIterator i = listIterator(index); 
    try { 
        return i.next(); 
    } catch(NoSuchElementException e) { 
        throw new IndexOutOfBoundsException("Index: " + index); 
    } 
} 

A special form of exception translation called exception chaining is appropriate in cases 
where the lower-level exception might be helpful to someone debugging the situation that 
caused the exception. In this approach, the lower-level exception is stored by the higher-level 
exception, which provides a public accessor method to retrieve the lower-level exception: 

 
// Exception Chaining 
try { 
    // Use lower-level abstraction to do our bidding 
    ... 
} catch (LowerLevelException e) { 
    throw new HigherLevelException(e); 
} 

As of release 1.4, exception chaining is supported by Throwable. If you're targeting release 
1.4 (or a later one), you can take advantage of this support by having your higher-level 
exception's constructor chain to Throwable(Throwable): 

 
// Exception chaining in release 1.4 
HigherLevelException(Throwable t) { 
    super(t); 
} 



Effective Java: Programming Language Guide 

135 

If you're targeting an earlier release, your exception must store the lower-level exception and 
provide an accessor: 

 
// Exception chaining prior to release 1.4 
private Throwable cause; 
 
HigherLevelException(Throwable t) { 
    cause = t; 
} 
 
public Throwable getCause() { 
    return cause; 
} 

By naming the accessor getCause and using the shown declaration, you ensure that your 
exception will interoperate with the platform's chaining facility should you use the exception 
in a release like 1.4. This has the advantage of integrating the lower-level exception's stack 
trace into that of the higher-level exception in a standard fashion. Also, it allows standard 
debugging tools to access the lower-level exception. 

While exception translation is superior to mindless propagation of exceptions from 
lower layers, it should not be overused.  Where possible, the best way to deal with 
exceptions from lower layers is to avoid them entirely by ensuring that lower-level methods 
will succeed before invoking them. Sometimes you can do this by explicitly checking the 
validity of the higher-level method's arguments before passing them on to lower layers. 

If it is impossible to prevent exceptions from lower layers, the next best thing is to have the 
higher layer silently work around these exceptions, insulating the caller of the higher-level 
method from the lower-level problem. Under these circumstances, it may be appropriate to 
log the exception using some appropriate logging facility such as java.util.logging, which 
was introduced in release 1.4. This allows an administrator to investigate the problem, while 
insulating the client code and the end user from it. 

In situations where it is not feasible to prevent exceptions from lower layers or to insulate 
higher layers from them, exception translation should generally be used. Only if the lower-
level method's specification happens to guarantee that all of the exceptions it throws are 
appropriate to the higher level should exceptions be allowed to propagate from the lower layer 
to the higher. 

Item 44:Document all exceptions thrown by each method 

A description of the exceptions thrown by a method comprises an important part of the 
documentation required to use the method properly. Therefore it is critically important that 
you take the time to carefully document all of the exceptions thrown by each method. 

Always declare checked exceptions individually, and document precisely the conditions 
under which each one is thrown using the Javadoc @throws tag.  Don't take the shortcut of 
declaring that a method throws some superclass of multiple exception classes that it may 
throw. As an extreme example, never declare that a method “throws Exception” or, worse 
yet, “throws Throwable.” In addition to denying any guidance to the programmer concerning 
the exceptions that the method is capable of throwing, such a declaration greatly hinders the 
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use of the method, as it effectively obscures any other exception that may be thrown in the 
same context. 

While the language does not require programmers to declare the unchecked exceptions that a 
method is capable of throwing, it is wise to document them as carefully as the checked 
exceptions. Unchecked exceptions generally represent programming errors (Item 40), and 
familiarizing programmers with all of the errors they can make helps them avoid making 
these errors. A well-documented list of the unchecked exceptions that a method can throw 
effectively describes the preconditions for its successful execution. It is essential that each 
method's documentation describes its preconditions, and documenting its unchecked 
exceptions is the best way to satisfy this requirement. 

It is particularly important that methods in interfaces document the unchecked exceptions they 
may throw. This documentation forms a part of the interface's general contract and enables 
common behavior among multiple implementations of the interface. 

Use the Javadoc @throws tag to document each unchecked exception that a method can 
throw, but do not use the throws keyword to include unchecked exceptions in the 
method declaration.  It is important that the programmer using your API be aware of which 
exceptions are checked and which are unchecked, as his responsibilities differ in these two 
cases. The documentation generated by the Javadoc @throws tag in the absence of the method 
header generated by the throws declaration provides a strong visual cue to help the 
programmer distinguish checked exceptions from unchecked. 

It should be noted that documenting all of the unchecked exceptions that each method can 
throw is an ideal, not always achievable in the real world. When a class undergoes revision, it 
is not a violation of source or binary compatibility if an exported method is modified to throw 
additional unchecked exceptions. Suppose a class invokes a method from another, 
independently written class. The authors of the former class may carefully document all of the 
unchecked exceptions that each method throws, but if the latter class is revised to throw 
additional unchecked exceptions, it is quite likely that the former class (which has not 
undergone revision) will propagate the new unchecked exceptions even though it does not 
declare them. 

If an exception is thrown by many methods in a class for the same reason, it is 
acceptable to document the exception in the class's documentation comment rather than 
documenting it individually for each method. A common example is 
NullPointerException. It is fine for a class's documentation comment to say “all methods 
in this class throw a NullPointerException if a null object reference is passed in any 
parameter,” or words to that effect. 

Item 45:Include failure-capture information in detail messages 

When a program fails due to an uncaught exception, the system automatically prints out the 
exception's stack trace. The stack trace contains the exception's string representation, the 
result of its toString method. This typically consists of the exception's class name followed 
by its detail message. Frequently this is the only information that programmers or field 
service personnel investigating a software failure will have to go on. If the failure is not easily 
reproducible, it may be difficult or impossible to get any more information. Therefore it is 
critically important that the exception's toString method return as much information about 
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the cause of the failure as possible. In other words, the string representation of an exception 
should capture the failure for subsequent analysis. 

To capture the failure, the string representation of an exception should contain the 
values of all parameters and fields that “contributed to the exception.”  For example, an 
IndexOutOfBounds exception's detail message should contain the lower bound, the upper 
bound, and the actual index that failed to lie between the bounds. This information tells a lot 
about the failure. Any or all of the three values could be wrong. The actual index could be one 
less than the lower bound or equal to the upper bound (a “fencepost error”), or it could be a 
wild value, far too low or high. The lower bound could be greater than the upper bound (a 
serious internal invariant failure). Each of these situations points to a different problem, and it 
greatly aids in the diagnosis if the programmer knows what sort of error to look for. 

While it is critical to include all of the pertinent “hard data” in the string representation of an 
exception, it is generally unimportant to include a lot of prose. The stack trace is intended to 
be analyzed in conjunction with the source files and generally contains the exact file and line 
number from which the exception was thrown, as well as the files and line numbers of all 
other method invocations on the stack. Lengthy prose descriptions of the failure are generally 
superfluous; the information can be gleaned by reading the source code. 

The string representation of an exception should not be confused with a user-level error 
message, which must be intelligible to end users. Unlike a user-level error message, it is 
primarily for the benefit of programmers or field service personnel for use when analyzing a 
failure. Therefore information content is far more important than intelligibility. 

One way to ensure that exceptions contain adequate failure-capture information in their string 
representations is to require this information in their constructors in lieu of a string detail 
message. The detail message can then be generated automatically to include the information. 
For example, instead of a String constructor, IndexOutOfBoundsException could have had 
a constructor that looks like this: 

 
/** 
 * Construct an IndexOutOfBoundsException. 
 * 
 * @param lowerBound the lowest legal index value. 
 * @param upperBound the highest legal index value plus one. 
 * @param index      the actual index value. 
 */ 
public IndexOutOfBoundsException(int lowerBound, int upperBound, 
                                 int index) { 
    // Generate a detail message that captures the failure 
    super(  "Lower bound: " + lowerBound + 
          ", Upper bound: " + upperBound + 
          ", Index: "       + index); 
} 

Unfortunately, the Java platform libraries do not make heavy use of this idiom, but it is highly 
recommended. It makes it easy for the programmer throwing an exception to capture the 
failure. In fact, it makes it hard for the programmer not to capture the failure! In effect, the 
idiom centralizes the code to generate a high-quality string representation for an exception in 
the exception class itself, rather than requiring each user of the class to generate the string 
representation redundantly. 



Effective Java: Programming Language Guide 

138 

As suggested in Item 40, it may be appropriate for an exception to provide accessor methods 
for its failure-capture information (lowerBound, upperBound, and index in the above 
example). It is more important to provide such accessor methods on checked exceptions than 
on unchecked exceptions because the failure-capture information could be useful in 
recovering from the failure. It is rare (although not inconceivable) that a programmer might 
want programmatic access to the details of an unchecked exception. Even for unchecked 
exceptions, however, it seems advisable to provide these accessors on general principle 
(Item 9). 

Item 46:Strive for </vetbfailure atomicity 

After an object throws an exception, it is generally desirable that the object still be in     
a well-defined, usable state, even if the failure occurred in the midst of performing 
an operation. This is especially true for checked exceptions, from which the caller is expected 
to recover. Generally speaking, a failed method invocation should leave the object in 
the state that it was in prior to the invocation. A method with this property is said to be 
failure atomic. 

There are several ways to achieve this effect. The simplest is to design immutable objects 
(Item 13). If an object is immutable, failure atomicity is free. If an operation fails, it may 
prevent a new object from getting created, but it will never leave an existing object in 
an inconsistent state because the state of each object is consistent when it is created and can't 
be modified thereafter. 

For methods that operate on mutable objects, the most common way to achieve failure 
atomicity is to check parameters for validity before performing the operation (Item 23). This 
causes any exception to get thrown before object modification commences. For example, 
consider the Stack.pop method in Item 5: 

 
public Object pop() { 
    if (size == 0) 
        throw new EmptyStackException(); 
    Object result = elements[--size]; 
    elements[size] = null; // Eliminate obsolete reference 
    return result; 
} 

If the initial size check were eliminated, the method would still throw an exception when it 
attempted to pop an element from an empty stack. However it would leave the size field in 
an inconsistent (negative) state, causing any future method invocations on the object to fail. 
Additionally, the exception thrown by the pop method would be inappropriate to 
the abstraction (Item 43). 

A closely related approach to achieving failure atomicity is to order the computation so that 
any part that may fail takes place before any part that modifies the object. This approach is 
a natural extension of the previous one when arguments cannot be checked without 
performing a part of the computation. For example, consider the case of TreeMap, whose 
elements are sorted according to some ordering. In order to add an element to a TreeMap, 
the element must be of a type that can be compared using the TreeMap's ordering. Attempting 
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to add an incorrectly typed element will naturally fail with a ClassCastException as a result 
of searching for the element in the tree, before the tree has been modified in any way. 

A third and far less common approach to achieving failure atomicity is to write recovery code 
that intercepts a failure occurring in the midst of an operation and causes the object to roll 
back its state to the point before the operation began. This approach is used mainly for 
persistent data structures. 

A final approach to achieving failure atomicity is to perform the operation on a temporary 
copy of the object and replace the contents of the object with the temporary copy once the 
operation is complete. This approach occurs naturally when the computation can be 
performed more quickly once the data have been stored in a temporary data structure. For 
example, Collections.sort dumps its input list into an array prior to sorting to reduce the 
cost of accessing elements in the inner loop of the sort. This is done for performance, but, as 
an added benefit, it ensures that the input list will be untouched if the sort fails. 

While failure atomicity is generally desirable, it is not always achievable. For example, if two 
threads attempt to modify the same object concurrently without proper synchronization, the 
object may be left in an inconsistent state. It would therefore be wrong to assume that an 
object was still usable after catching a ConcurrentModificationException. Errors (as 
opposed to exceptions) are generally unrecoverable, and methods need not even attempt to 
preserve failure atomicity when throwing errors. 

Even where failure atomicity is possible, it is not always desirable. For some operations, it 
would significantly increase cost or complexity. However, it is often both free and easy to 
achieve failure atomicity once you're aware of the issue. As a rule, any exception that is part 
of a method's specification should leave the object in the same state it was in prior to the 
method invocation. Where this rule is violated, the API documentation should clearly indicate 
what state the object will be left in. Unfortunately, plenty of existing API documentation fails 
to live up to this ideal. 

Item 47:Don't ignore exceptions 

While this advice may seem obvious, it is violated often enough that it bears repeating. When 
the designers of an API declare a method to throw an exception, they are trying to tell you 
something. Don't ignore it! It is easy to ignore exceptions by surrounding the method 
invocation with a try statement with an empty catch block: 

 
// Empty catch block ignores exception - Highly suspect! 
try { 
    ... 
} catch (SomeException e) { 
} 

An empty catch block defeats the purpose of exceptions, which is to force you to handle 
exceptional conditions. Ignoring an exception is analogous to ignoring a fire alarm—and 
turning it off so no one else gets a chance to see if there's a real fire. You may get away with 
it, or the results may be disastrous. Whenever you see an empty catch block, alarm bells 
should go off in your head. At the very least, the catch block should contain a comment 
explaining why it is appropriate to ignore the exception. 
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An example of the sort of situation where it might be appropriate to ignore an exception is 
image rendering for animation. If the screen is being updated at regular intervals, the best way 
to deal with a transient fault may be to ignore it and wait for the next update. 

The advice in this item applies equally to checked and unchecked exceptions. Whether an 
exception represents a predictable exceptional condition or a programming error, ignoring it 
with an empty catch block will result in a program that continues silently in the face of error. 
The program may then fail at an arbitrary time in the future, at a point in the code that may 
not bear any relation to the source of the problem. Properly handling an exception can avert 
failure entirely. Merely letting an unchecked exception propagate outwardly at least causes 
the program to fail swiftly, preserving information to aid in debugging the failue. 
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Chapter 9. Threads 
Threads allow multiple activities to proceed concurrently in the same program. Multithreaded 
programming is more difficult than single-threaded programming, so the advice of Item 30 is 
particularly applicable here: If there is a library class that can save you from doing low-level 
multithreaded programming, by all means use it. The java.util.Timer class is one example, 
and Doug Lea's util.concurrent package[Lea01] is a whole collection of high-level 
threading utilities. Even if you use such libraries where applicable, you'll still have to write or 
maintain multithreaded code from time to time. This chapter contains advice to help you write 
clear, correct, well-documented multithreaded programs. 

Item 48: Synchronize access to shared mutable data 

The synchronized keyword ensures that only a single thread will execute a statement or 
block at a time. Many programmers think of synchronization solely as a means of mutual 
exclusion, to prevent an object from being observed in an inconsistent state while it is being 
modified by another thread. In this view, an object is created in a consistent state (Item 13) 
and locked by the methods that access it. These methods observe the state and optionally 
cause a state transition, transforming the object from one consistent state to another. Proper 
use of synchronization guarantees that no method will ever observe the object in 
an inconsistent state. 

This view is correct, but it doesn't tell the whole story. Not only does synchronization prevent 
a thread from observing an object in an inconsistent state, but it also ensures that objects 
progress from consistent state to consistent state by an orderly sequence of state transitions 
that appear to execute sequentially. Every thread entering a synchronized method or block 
sees the effects of all previous state transitions controlled by the same lock. After a thread 
exits the synchronized region, any thread that enters a region synchronized by the same lock 
sees the state transition caused by that thread, if any. 

The language guarantees that reading or writing a single variable is atomic unless the variable 
is of type long or double. In other words, reading a variable other than a long or double is 
guaranteed to return a value that was stored into that variable by some thread, even if multiple 
threads modify the variable concurrently without synchronization. 

You may hear it said that to improve performance, you should avoid the use of 
synchronization when reading or writing atomic data. This advice is dangerously 
wrong.  While the atomicity guarantee ensures that a thread will not see a random value when 
reading atomic data, it does not guarantee that a value written by one thread will be visible to 
another: Synchronization is required for reliable communication between threads as well 
as for mutual exclusion. This is a consequence of a fairly technical aspect of the Java 
programming language known as the memory model [JLS, 17]. While the memory model is 
likely to undergo substantial revision in an upcoming release [Pugh01a], it is a near certainty 
that this fact will not change. 

The consequences of failing to synchronize access to a shared variable can be dire even if 
the variable is atomically readable and writable. Consider the following serial number 
generation facility: 
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// Broken - requires synchronization! 
private static int nextSerialNumber = 0; 
 
public static int generateSerialNumber() { 
    return nextSerialNumber++; 
} 

The intent of this facility is to guarantee that every invocation of generateSerialNumber 
returns a different serial number, as long as there are no more than 232 invocations. 
Synchronization is not required to protect the invariants of the serial number generator 
because it has none; its state consists of a single atomically writable field 
(nextSerialNumber), and all possible values of this field are legal. However, the method 
does not work without synchronization. The increment operator (++) both reads and writes the 
nextSerialNumber field so it is not atomic. The read and write are independent operations, 
performed in sequence. Multiple concurrent threads can thus observe the nextSerialNumber 
field with the same value and return the same serial number. 

More surprisingly, it is possible for one thread to call generateSerialNumber repeatedly, 
obtaining a sequence of serial numbers from zero to n, after which another thread calls 
generateSerialNumber and obtains a serial number of zero. Without synchronization, the 
second thread might see none of the updates made by the first. This is a result of the 
aforementioned memory model issue. 

Fixing the generateSerialNumber method is as simple as adding the synchronized 
modifier to its declaration. This ensures that multiple invocations won't be interleaved and 
that each invocation will see the effects of all previous invocations. To bulletproof the 
method, it might also be wise to use long instead of int or to throw an exception if 
nextSerialNumber were about to wrap. 

Next, consider the process of stopping a thread. While the platform provides methods for 
involuntarily stopping a thread, these methods are deprecated because they are inherently 
unsafe—their use can result in object corruption. The recommended method of stopping 
a thread is simply to have the thread poll some field whose value can be changed to indicate 
that the thread is to stop itself. The field is typically a boolean or an object reference. 
Because reading and writing such a field is atomic, some programmers are tempted to 
dispense with synchronization when accessing the field. Thus it is not uncommon to see code 
that looks like this: 

// Broken - requires synchronization! 
public class StoppableThread extends Thread { 
    private boolean stopRequested = false; 
 
    public void run() { 
        boolean done = false; 
 
        while (!stopRequested && !done) { 
            ... // do what needs to be done. 
        } 
    } 
 
    public void requestStop() { 
        stopRequested = true; 
    } 
} 
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The problem with this code is that in the absence of synchronization, there is no guarantee as 
to when, if ever, the stoppable thread will “see” a change in the the value of stopRequested 
that was made by another thread. As a result, the requestStop method might be completely 
ineffective. Unless you are running on a multiprocessor, you are unlikely to observe the 
problematic behavior in practice, but there are no guarantees. The straightforward way to fix 
the problem is simply to synchronize all access to the stopRequested field: 

 
// Properly synchronized cooperative thread termination 
public class StoppableThread extends Thread { 
    private boolean stopRequested = false; 
 
    public void run() { 
        boolean done = false; 
 
        while (!stopRequested() && !done) { 
            ... // do what needs to be done. 
        } 
    } 
 
    public synchronized void requestStop() { 
        stopRequested = true; 
    } 
 
    private synchronized boolean stopRequested() { 
        return stopRequested; 
    } 
} 

Note that the actions of each of the synchronized methods are atomic: The synchronization is 
being used solely for its communication effects, not for mutual exclusion. It is clear that the 
revised code works, and the cost of synchronizing on each iteration of the loop is unlikely to 
be noticeable. That said, there is a correct alternative that is slightly less verbose and whose 
performance may be slightly better. The synchronization may be omitted if stopRequested is 
declared volatile. The volatile modifier guarantees that any thread that reads a field will 
see the most recently written value. 

The penalty for failing to synchronize access to stopRequested in the previous example is 
comparatively minor; the effect of the requestStop method may be delayed indefinitely. The 
penalty for failing to synchronize access to mutable shared data can be much more severe. 
Consider the double-check idiom for lazy initialization: 

 
// The double-check idiom for lazy initialization - broken! 
private static Foo foo = null; 
 
public static Foo getFoo() { 
    if (foo == null) { 
        synchronized (Foo.class) { 
            if (foo == null) 
                foo = new Foo(); 
        } 
    } 
    return foo; 
} 
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The idea behind this idiom is that you can avoid the cost of synchronization in the common 
case of accessing the field (foo) after it has been initialized. Synchronization is used only to 
prevent multiple threads from initializing the field. The idiom does guarantee that the field 
will be initialized at most once and that all threads invoking getFoo will get the correct value 
for the object reference. Unfortunately, the object reference is not guaranteed to work 
properly. If a thread reads the reference without synchronization and then invokes a method 
on the referenced object, the method may observe the object in a partially initialized state and 
fail catastrophically. 

That a thread can observe the lazily constructed object in a partially initialized state is wildly 
counterintuitive. The object is fully constructed before the reference is “published” in the field 
from which it is read by other threads (foo). But in the absence of synchronization, reading a 
“published” object reference does not guarantee that a thread will see all of the data that were 
stored in memory prior to the publication of the object reference. In particular, reading a 
published object reference does not guarantee that the reading thread will see the most recent 
values of the data that constitute the internals of the referenced object. In general, the double-
check idiom does not work, although it does work if the shared variable contains a primitive 
value rather than an object reference [Pugh01b]. 

There are several ways to fix the problem. The easiest way is to dispense with lazy 
initialization entirely: 

 
// Normal static initialization (not lazy) 
private static final Foo foo = new Foo(); 
 
public static Foo getFoo() { 
    return foo; 
} 

This clearly works, and the getFoo method is as fast as it could possibly be. It does no 
synchronization and no computation either. As discussed in Item 37, you should write simple, 
clear, correct programs, leaving optimization till last, and you should optimize only if 
measurement shows that it is necessary. Therefore dispensing with lazy initialization is 
generally the best approach. If you dispense with lazy initialization, measure the cost, and find 
that it is prohibitive, the next best thing is to use a properly synchronized method to perform 
lazy initialization: 

 
// Properly synchronized lazy initialization 
private static Foo foo = null; 
 
public static synchronized Foo getFoo() { 
    if (foo == null) 
        foo = new Foo(); 
    return foo; 
} 

This method is guaranteed to work, but it incurs the cost of synchronization on every 
invocation. On modern JVM implementations, this cost is relatively small. However, if you've 
determined by measuring the performance of your system that you can afford neither the cost 
of normal initialization nor the cost of synchronizing every access, there is another option. 
The initialize-on-demand holder class idiom is appropriate for use when a static field is 
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expensive to initialize and may not be needed, but will be used intensively if it is needed. This 
idiom is shown below: 

 
// The initialize-on-demand holder class idiom 
private static class FooHolder { 
    static final Foo foo = new Foo(); 
} 
 
public static Foo getFoo() { return FooHolder.foo; } 

The idiom takes advantage of the guarantee that a class will not be initialized until it is used 
[JLS, 12.4.1]. When the getFoo method is invoked for the first time, it reads the field 
FooHolder.foo, causing the FooHolder class to get initialized. The beauty of this idiom is 
that the getFoo method is not synchronized and performs only a field access, so lazy 
initialization adds practically nothing to the cost of access. The only shortcoming of the idiom 
is that it does not work for instance fields, only for static fields. 

In summary, whenever multiple threads share mutable data, each thread that reads or 
writes the data must obtain a lock. Do not let the guarantee of atomic reads and writes deter 
you from performing proper synchronization. Without synchronization, there is no guarantee 
as to which, if any, of a thread's changes will be observed by another thread. Liveness and 
safety failures can result from unsynchronized data access. Such failures will be extremely 
difficult to reproduce. They may be timing dependent and will be highly dependent on the 
details of the JVM implementation and the hardware on which it is running. 

The use of the volatile modifier constitutes a viable alternative to ordinary synchronization 
under certain circumstances, but this is an advanced technique. Furthermore, the extent of its 
applicability will not be known until the ongoing work on the memory model is complete. 

Item 49: Avoid excessive synchronization 

Item 48 warns of the dangers of insufficient synchronization. This item concerns the opposite 
problem. Depending on the situation, excessive synchronization can cause reduced 
performance, deadlock, or even nondeterministic behavior. 

To avoid the risk of deadlock, never cede control to the client within a synchronized 
method or block.  In other words, inside a synchronized region, do not invoke a public or 
protected method that is designed to be overridden. (Such methods are typically abstract, but 
occasionally they have a concrete default implementation.) From the perspective of the class 
containing the synchronized region, such a method is alien. The class has no knowledge of 
what the method does and no control over it. A client could provide an implementation of an 
alien method that creates another thread that calls back into the class. The newly created 
thread might then try to acquire the same lock held by the original thread, which would cause 
the newly created thread to block. If the method that created the thread waits for the thread to 
finish, deadlock results. 

To make this concrete, consider the following class, which implements a work queue. This 
class allows clients to enqueue work items for asynchronous processing. The enqueue method 
may be invoked as often as necessary. The constructor starts a background thread that 
removes items from the queue in the order they were enqueued and processes them by 



Effective Java: Programming Language Guide 

146 

invoking the processItem method. When the work queue is no longer needed, the client 
invokes the stop method to ask the thread to terminate gracefully after completing any work 
item in progress. 

 
public abstract class WorkQueue { 
    private final List queue = new LinkedList(); 
    private boolean stopped = false; 
 
    protected WorkQueue() { new WorkerThread().start(); } 
 
    public final void enqueue(Object workItem) { 
        synchronized (queue) { 
            queue.add(workItem); 
            queue.notify(); 
        } 
    } 
 
    public final void stop()  { 
        synchronized (queue) { 
            stopped = true; 
            queue.notify(); 
        } 
    } 
    protected abstract void processItem(Object workItem) 
        throws InterruptedException; 
 
    // Broken - invokes alien method from synchronized block! 
    private class WorkerThread extends Thread { 
        public void run() { 
            while (true) {  // Main loop 
                synchronized (queue) { 
                    try { 
                        while (queue.isEmpty() && !stopped) 
                            queue.wait(); 
                    } catch (InterruptedException e) { 
                        return; 
                    } 
 
                    if (stopped) 
                        return; 
 
                    Object workItem = queue.remove(0); 
                    try { 
                        processItem(workItem); // Lock held! 
                    } catch (InterruptedException e) { 
                        return; 
                    } 
                } 
            } 
        } 
    } 
} 

To use this class, you must subclass it to provide an implementation of the abstract 
processItem method. For example, the following subclass prints out each work item, 
printing no more than one item per second, no matter how frequently items are enqueued: 
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class DisplayQueue extends WorkQueue { 
    protected void processItem(Object workItem) 
            throws InterruptedException { 
        System.out.println(workItem); 
        Thread.sleep(1000); 
    } 
} 

Because the WorkQueue class invokes the abstract processItem method from within a 
synchronized block, it is subject to deadlock. The following subclass will cause it to deadlock 
by the means described above: 

 
class DeadlockQueue extends WorkQueue { 
    protected void processItem(final Object workItem) 
            throws InterruptedException { 
        // Create a new thread that returns workItem to queue 
        Thread child = new Thread() { 
            public void run() { enqueue(workItem); } 
        }; 
        child.start(); 
        child.join(); // Deadlock! 
    } 
} 

This example is contrived because there is no reason for the processItem method to create a 
background thread, but the problem is real. Invoking externally provided methods from within 
synchronized blocks has caused many deadlocks in real systems such as GUI toolkits. Luckily 
it is easy to fix the problem. Simply move the method invocation outside of the synchronized 
block, as shown: 

 
// Alien method outside synchronized block - "Open call" 
private class WorkerThread extends Thread { 
    public void run() { 
        while (true) {  // Main loop 
            Object workItem = null; 
            synchronized (queue) { 
                try { 
                    while (queue.isEmpty() && !stopped) 
                        queue.wait(); 
                } catch (InterruptedException e) { 
                    return; 
                } 
                if (stopped) 
                    return; 
                workItem = queue.remove(0); 
            } 
            try { 
                processItem(workItem); // No lock held 
            } catch (InterruptedException e) { 
                return; 
            } 
        } 
    } 
} 



Effective Java: Programming Language Guide 

148 

An alien method invoked outside of a synchronized region is known as an open call [Lea00, 
2.4.1.3]. Besides preventing deadlocks, open calls can greatly increase concurrency. An alien 
method might run for an arbitrarily long period, during which time other threads would 
unnecessarily be denied access to the shared object if the alien method were invoked inside 
the synchronized region. 

As a rule, you should do as little work as possible inside synchronized regions.  Obtain 
the lock, examine the shared data, transform the data as necessary, and drop the lock. If you 
must perform some time-consuming activity, find a way to move the activity out of the 
synchronized region. 

Invoking an alien method from within a synchronized region can cause failures more severe 
than deadlocks if the alien method is invoked while the invariants protected by the 
synchronized region are temporarily invalid. (This cannot happen in the broken work queue 
example because the queue is in a consistent state when processItem is invoked.) Such 
failures do not involve the creation of a new thread from within the alien method; they occur 
when the alien method itself calls back in to the faulty class. Because locks in the Java 
programming language are recursive, such calls won't deadlock as they would if they were 
made by another thread. The calling thread already holds the lock, so the thread will succeed 
when it tries to acquire the lock a second time, even though there is another conceptually 
unrelated operation in progress on the data protected by the lock. The consequences of such a 
failure can be catastrophic; in essence, the lock has failed to do its job. Recursive locks 
simplify the construction of multithreaded object-oriented programs, but they can turn 
liveness failures into safety failures. 

The first part of this item was about concurrency problems. Now we turn our attention to 
performance. While the cost of synchronization has plummeted since the early days of the 
Java platform, it will never vanish entirely. If a frequently used operation is synchronized 
unnecessarily, it can have significant impact on performance. For example, consider the 
classes StringBuffer and BufferedInputStream. These classes are thread-safe (Item 52) 
but are almost always used by a single thread, so the locking they do is usually unnecessary. 
They support fine-grained methods, operating at the individual character or byte level, so not 
only do these classes tend to do unnecessary locking, but they tend to do a lot of it. This can 
result in significant performance loss. One paper reported a loss close to 20 percent in a real-
world application [Heydon99]. You are unlikely to see performance losses this dramatic 
caused by unnecessary synchronization, but 5 to 10 percent is within the realm of possibility. 

Arguably this belongs to the “small efficiencies” that Knuth says we should forget about 
(Item 37). If, however, you are writing a low-level abstraction that will generally be used by a 
single thread or as a component in a larger synchronized object, you should consider 
refraining from synchronizing the class internally. Whether or not you decide to synchronize a 
class, it is critical that you document its thread-safety properties (Item 52). 

It is not always clear whether a given class should perform internal synchronization. In the 
nomenclature of Item 52, it is not always clear whether a class should be made thread-safe or 
thread-compatible. Here are a few guidelines to help you make this choice. 

If you're writing a class that will be used heavily in circumstances requiring synchronization 
and also in circumstances where synchronization is not required, a reasonable approach is to 
provide both synchronized (thread-safe) and unsynchronized (thread-compatible) variants. 
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One way to do this is to provide a wrapper class (Item 14) that implements an interface 
describing the class and performs appropriate synchronization before forwarding method 
invocations to the corresponding method of the wrapped object. This is the approach that was 
taken by the Collections Framework. Arguably, it should have been taken by 
java.util.Random as well. A second approach, suitable for classes that are not designed to 
be extended or reimplemented, is to provide an unsynchronized class and a subclass 
consisting solely of synchronized methods that invoke their counterparts in the superclass. 

One good reason to synchronize a class internally is because it is intended for heavily 
concurrent use and you can achieve significantly higher concurrency by performing internal 
fine-grained synchronization. For example, it is possible to implement a nonresizable hash 
table that independently synchronizes access to each bucket. This affords much greater 
concurrency than locking the entire table to access a single entry. 

If a class or a static method relies on a mutable static field, it must be synchronized internally, 
even if it is typically used by a single thread. Unlike a shared instance, it is not possible for 
the client to perform external synchronization because there can be no guarantee that other 
clients will do likewise. The static method Math.random exemplifies this situation. 

In summary, to avoid deadlock and data corruption, never call an alien method from within a 
synchronized region. More generally, try to limit the amount of work that you do from within 
synchronized regions. When you are designing a mutable class, think about whether it should 
do its own synchronization. The cost savings that you can hope to achieve by dispensing with 
synchronization is no longer huge, but it is measurable. Base your decision on whether the 
primary use of the abstraction will be multithreaded, and document your decision clearly. 

Item 50: Never invoke wait outside a loop 

The Object.wait method is used to make a thread wait for some condition. It must be 
invoked inside a synchronized region that locks the object on which it is invoked. This is the 
standard idiom for using the wait method: 

 
synchronized (obj) { 
    while (<condition does not hold>) 
        obj.wait(); 
 
    ... // Perform action appropriate to condition 
} 

Always use the wait loop idiom to invoke the wait method.  Never invoke it outside of a 
loop. The loop serves to test the condition before and after waiting. 

Testing the condition before waiting and skipping the wait if the condition already holds are 
necessary to ensure liveness. If the condition already holds and notify (or notifyAll) 
method has already been invoked before a thread waits, there is no guarantee that the thread 
will ever waken from the wait. 

Testing the condition after waiting and waiting again if the condition does not hold are 
necessary to ensure safety. If the thread proceeds with the action when the condition does not 
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hold, it can destroy the invariants protected by the lock. There are several reasons a thread 
might wake up when the condition does not hold: 

• Another thread could have obtained the lock and changed the protected state between 
the time a thread invoked notify and the time the waiting thread woke up. 

• Another thread could have invoked notify accidentally or maliciously when the 
condition did not hold. Classes expose themselves to this sort of mischief by waiting 
on publicly accessible objects. Any wait contained in a synchronized method of a 
publicly accessible object is susceptible to this problem. 

• The notifying thread could be overly “generous” in waking waiting threads. For 
example, the notifying thread must invoke notifyAll even if only some of the 
waiting threads have their condition satisfied. 

• The waiting thread could wake up in the absence of a notify. This is known as a 
spurious wakeup. Although The Java Language Specification[JLS] does not mention 
this possibility, many JVM implementations use threading facilities in which spurious 
wakeups are known to occur, albeit rarely [Posix, 11.4.3.6.1]. 

A related issue is whether you should use notify or notifyAll to wake waiting threads. 
(Recall that notify wakes a single waiting thread, assuming such a thread exists, and 
notifyAll wakes all waiting threads.) It is often said that you should always use notifyAll. 
This is reasonable, conservative advice, assuming that all wait invocations are inside while 
loops. It will always yield correct results because it guarantees that you'll wake the threads 
that need to be awakened. You may wake some other threads too, but this won't affect the 
correctness of your program. These threads will check the condition for which they're waiting 
and, finding it false, will continue waiting. 

As an optimization, you may choose to invoke notify instead of notifyAll if all threads that 
could be in the wait-set are waiting for the same condition and only one thread at a time can 
benefit from the condition becoming true. Both of these conditions are trivially satisfied if 
only a single thread waits on a particular object (as in the WorkQueue example, Item 49). 

Even if these conditions appear true, there may be cause to use notifyAll in place of 
notify. Just as placing the wait invocation in a loop protects against accidental or malicious 
notifications on a publicly accessible object, using notifyAll in place of notify protects 
against accidental or malicious waits by an unrelated thread. Such waits could otherwise 
“swallow” a critical notification, leaving its intended recipient waiting indefinitely. The 
reason that notifyAll was not used in the WorkQueue example is that the worker thread waits 
on a private object (queue) so there is no danger of accidental or malicious waits. 

There is one caveat concerning the advice to use notifyAll in preference to notify. While 
the use of notifyAll cannot harm correctness, it can harm performance. In fact, it 
systematically degrades the performance of certain data structures from linear in the number 
of waiting threads to quadratic. The class of data structures so affected are those for which 
only a certain number of threads are granted some special status at any given time and other 
threads must wait. Examples include semaphores, bounded buffers, and read-write locks. 

If you are implementing this sort of data structure and you wake up each thread as it becomes 
eligible for “special status,” you wake each thread once for a total of n wakeups. If you wake 
all n threads when only one can obtain special status and the remaining n-1 threads go back to 
waiting, you will end up with n + (n – 1) + (n – 2) … + 1 wakeups by the time all waiting 



Effective Java: Programming Language Guide 

151 

threads have been granted special status. The sum of this series is O(n2). If you know that the 
number of threads will always be small, this may not be a problem in practice, but if you have 
no such assurances, it is important to use a more selective wakeup strategy. 

If all of the threads vying for special status are logically equivalent, then all you have to do is 
carefully use notify instead of notifyAll. If, however, only some of the waiting threads are 
eligible for special status at any given time, then you must use a pattern known as Specific 
Notification [Cargill96, Lea99]. This pattern is beyond the scope of this book. 

In summary, always invoke wait from within a while loop, using the standard idiom. There 
is simply no reason to do otherwise. Usually, you should use notifyAll in preference to 
notify. There are, however, situations where doing so will impose a substantial performance 
penalty. If notify is used, great care must be taken to ensure liveness. 

Item 51: Don't depend on the thread scheduler 

When multiple threads are runnable, the thread scheduler determines which threads get to run 
and for how long. Any reasonable JVM implementation will attempt some sort of fairness 
when making this determination, but the exact policy varies greatly among implementations. 
Therefore well-written multithreaded programs should not depend on the details of this 
policy. Any program that relies on the thread scheduler for its correctness or 
performance is likely to be nonportable. 

The best way to write a robust, responsive, portable multithreaded application is to ensure that 
there are few runnable threads at any given time. This leaves the thread scheduler with very 
little choice: It simply runs the runnable threads till they're no longer runnable. As a 
consequence, the program's behavior doesn't vary much even under radically different thread 
scheduling algorithms. 

The main technique for keeping the number of runnable threads down is to have each thread 
do a small amount of work and then wait for some condition using Object.wait or for some 
time to elapse using Thread.sleep. Threads should not busy-wait, repeatedly checking a data 
structure waiting for something to happen. Besides making the program vulnerable to the 
vagaries of the scheduler, busy-waiting can greatly increase the load on the processor, 
reducing the amount of useful work that other processes can accomplish on the same machine. 

The work queue example in Item 49 follows these recommendations: Assuming the client-
provided processItem method is well behaved, the worker thread spends most of its time 
waiting on a monitor for the queue to become nonempty. As an extreme example of what not 
to do, consider this perverse reimplementation of WorkQueue, which busy-waits instead of 
using a monitor: 
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// HORRIBLE PROGRAM - uses busy-wait instead of Object.wait! 
public abstract class WorkQueue { 
    private final List queue = new LinkedList(); 
    private boolean stopped = false; 
 
    protected WorkQueue() { new WorkerThread().start(); } 
 
    public final void enqueue(Object workItem) { 
        synchronized (queue) { queue.add(workItem); } 
    } 
    public final void stop()  { 
        synchronized (queue) { stopped = true; } 
    } 
    protected abstract void processItem(Object workItem) 
        throws InterruptedException; 
    private class WorkerThread extends Thread { 
        public void run() { 
            final Object QUEUE_IS_EMPTY = new Object(); 
            while (true) {  // Main loop 
                Object workItem = QUEUE_IS_EMPTY; 
                synchronized (queue) { 
                    if (stopped) 
                        return; 
                    if (!queue.isEmpty()) 
                        workItem = queue.remove(0); 
                } 
 
                if (workItem != QUEUE_IS_EMPTY) { 
                    try { 
                        processItem(workItem); 
                    } catch (InterruptedException e) { 
                        return; 
                    } 
                } 
            } 
        } 
    } 
} 

To give you some idea of the price you'd pay for this sort of implementation, consider the 
following microbenchmark, which creates two work queues and passes a work item back and 
forth between them. (The work item passed from one queue to the other is a reference to the 
former queue, which serves as a sort of return address.) The program runs for ten seconds 
before starting measurement to allow the system to “warm up” and then counts the number of 
round trips from queue to queue in the next ten seconds. On my machine, the final version of 
WorkQueue in Item 49 exhibits 23,000 round trips per second, while the perverse 
implementation above exhibits 17 round trips per second: 

 
class PingPongQueue extends WorkQueue { 
    volatile int count = 0; 
 
    protected void processItem(final Object sender) { 
        count++; 
        WorkQueue recipient = (WorkQueue) sender; 
        recipient.enqueue(this); 
    } 
} 
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public class WaitQueuePerf { 
    public static void main(String[] args) { 
        PingPongQueue q1 = new PingPongQueue(); 
        PingPongQueue q2 = new PingPongQueue(); 
        q1.enqueue(q2); // Kick-start the system 
 
        // Give the system 10 seconds to warm up 
        try { 
            Thread.sleep(10000); 
        } catch (InterruptedException e) { 
        } 
 
        // Measure the number of round trips in 10 seconds 
        int count = q1.count; 
        try { 
            Thread.sleep(10000); 
        } catch (InterruptedException e) { 
        } 
        System.out.println(q1.count - count); 
 
        q1.stop(); 
        q2.stop(); 
    } 
} 

While the WorkQueue implementation above may seem a bit farfetched, it's not uncommon to 
see multithreaded systems with one or more threads that are unnecessarily runnable. The 
results may not be as extreme as those demonstrated here, but performance and portability are 
likely to suffer. 

When faced with a program that barely works because some threads aren't getting enough 
CPU time relative to others, resist the temptation to “fix” the program by putting in calls 
to Thread.yield. You may succeed in getting the program to work, but the resulting 
program will be nonportable from a performance standpoint. The same yield invocations that 
improve performance on one JVM implementation might make it worse on another and have 
no effect on a third. Thread.yield has no testable semantics. A better course of action is to 
restructure the application to reduce the number of concurrently runnable threads. 

A related technique, to which similar caveats apply, is adjusting thread priorities. Thread 
priorities are among the least portable features of the Java platform. It is not 
unreasonable to tune the responsiveness of an application by tweaking a few thread priorities, 
but it is rarely necessary, and the results will vary from JVM implementation to JVM 
implementation. It is unreasonable to solve a serious liveness problem by adjusting thread 
priorities; the problem is likely to return until you find and fix the underlying cause. 

The only use that most programmers will ever have for Thread.yield is to artificially 
increase the concurrency of a program during testing.  This shakes out bugs by exploring 
a larger fraction of the program's state-space, thus increasing confidence in the correctness of 
the system. This technique has proven highly effective in ferreting out subtle concurrency 
bugs. 

In summary, do not depend on the thread scheduler for the correctness of your application. 
The resulting application will be neither robust nor portable. As a corollary, do not rely on 
Thread.yield or thread priorities. These facilities are merely hints to the scheduler. They 
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may be used sparingly to improve the quality of service of an already working 
implementation, but they should never be used to “fix” a program that barely works. 

Item 52: Document thread safety 

How a class behaves when its instances or static methods are subjected to concurrent use is an 
important part of the contract that the class establishes with its clients. If you do not document 
this component of a class's behavior, the programmers who use the class will be forced to 
make assumptions. If those assumptions are wrong, the resulting program may perform 
insufficient synchronization (Item 48) or excessive synchronization (Item 49). In either case, 
serious errors may result. 

It is sometimes said that users can determine the thread safety of a method by looking for the 
presence of the synchronized modifier in the documentation generated by Javadoc. This is 
wrong on several counts. While the Javadoc utility did include the synchronized modifier in 
its output in releases prior to 1.2, this was a bug and has been fixed. The presence of the 
synchronized modifier in a method declaration is an implementation detail, not a part 
of the exported API. Its presence does not reliably indicate that a method is thread safe; it is 
subject to change from release to release. 

Moreover, the claim that the presence of the synchronized keyword is sufficient to 
document thread safety embodies the common misconception that thread safety is an all-or-
nothing property. In fact, there are many levels of thread safety that a class can support. To 
enable safe multithreaded use, a class must clearly document in prose the level of thread 
safety that it supports. 

The following list summarizes the levels of thread safety that a class can support. This list is 
not meant to be exhaustive, but it covers the common cases. The names used in this list are 
not standard because there are no widely accepted conventions in this area: 

• immutable—  Instances of this class appear constant to their clients. No external 
synchronization is necessary. Examples include String, Integer, and BigInteger 
(Item 13). 

• thread-safe—  Instances of this class are mutable, but all methods contain sufficient 
internal synchronization that instances may be used concurrently without the need for 
external synchronization. Concurrent invocations will appear to execute serially in 
some globally consistent order. Examples include Random and java.util.Timer. 

• conditionally thread-safe—  Like thread-safe, except that the class (or an associated 
class) contains methods that must be invoked in sequence without interference from 
other threads. To eliminate the possibility of interference, the client must obtain an 
appropriate lock for the duration of the sequence. Examples include Hashtable and 
Vector, whose iterators require external synchronization. 

• thread-compatible—  Instances of this class can safely be used concurrently by 
surrounding each method invocation (and in some cases, each sequence of method 
invocations) by external synchronization. Examples include the general purpose 
collection implementations, such as ArrayList and HashMap. 

• thread-hostile—  This class is not safe for concurrent use by multiple threads, even if 
all method invocations are surrounded by external synchronization. Typically, thread 
hostility stems from the fact that methods modify static data that affect other threads. 
Luckily, there are very few thread-hostile classes or methods in the platform libraries. 
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The System.runFinalizersOnExit method is thread-hostile, and has been 
deprecated. 

Documenting a conditionally thread-safe class requires care. You must indicate which 
invocation sequences require external synchronization and which lock (or in rare cases, which 
locks) must be acquired to exclude concurrent access. Typically it is the lock on the instance 
itself, but there are exceptions. If an object represents an alternative view on some other 
object, the client must obtain a lock on the backing object so as to prevent direct 
modifications to the backing object. For example, the documentation for Hashtable.keys 
should say something like this: 

If there is any danger of another thread modifying this hash table, safely 
enumerating over its keys requires that you lock the Hashtable instance prior 
to calling this method, and retain the lock until you are finished using the 
returned Enumeration, as demonstrated in the following code fragment: 

 
Hashtable h = ...; 
 
synchronized (h) { 
    for (Enumeration e = h.keys(); e.hasMoreElements(); ) 
        f(e.nextElement()); 
} 

As of release 1.3, Hashtable's documentation does not include this prose, but hopefully this 
situation will soon be remedied. More generally, the Java platform libraries could do a better 
job of documenting their thread safety. 

While committing to the use of a publicly accessible lock object allows clients to perform a 
sequence of method invocations atomically, this flexibility comes at a price. A malicious 
client can mount a denial-of-service attack simply by holding the lock on the object: 

 
// Denial-of-service attack 
synchronized (importantObject) { 
    Thread.sleep(Integer.MAX_VALUE); // Disable importantObject 
} 

If you are concerned about this denial-of-service attack, you should use a private lock object 
to synchronize operations: 

 
// Private lock object idiom - thwarts denial-of-service attack 
private Object lock = new Object(); 
 
public void  foo() { 
    synchronized(lock) { 
        ... 
    } 
} 

Because the lock is obtained on an object that is inaccessible to clients, the containing object 
is immune from the denial-of-service attack shown above. Note that conditionally thread-safe 
classes are always prone to this attack because they must document the lock to be held when 
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performing operation sequences atomically. Thread-safe classes, however, may be protected 
from this attack by the use of the private lock object idiom. 

Using internal objects for locking is particularly suited to classes designed for inheritance 
(Item 15) such as the WorkQueue class in Item 49. If the superclass were to use its instances 
for locking, a subclass could unintentionally interfere with its operation. By using the same 
lock for different purposes, the superclass and the subclass could end up “stepping on each 
others' toes.” 

To summarize, every class should clearly document its thread-safety properties. The only way 
to do this is to provide carefully worded prose descriptions. The synchronized modifier 
plays no part in documenting the thread safety of a class. It is, however, important for 
conditionally thread-safe classes to document which object must be locked to allow sequences 
of method invocations to execute atomically. The description of a class's thread safety 
generally belongs in the class's documentation comment, but methods with special thread-
safety properties should describe these properties in their own documentation comments. 

Item 53: Avoid thread groups 

Along with threads, locks, and monitors, a basic abstraction offered by the threading system is 
thread groups. Thread groups were originally envisioned as a mechanism for isolating applets 
for security purposes. They never really fulfilled this promise, and their security importance 
has waned to the extent that they aren't even mentioned in the seminal work on the Java 2 
platform security model [Gong99]. 

Given that thread groups don't provide any security functionality to speak of, what 
functionality do they provide? To a first approximation, they allow you to apply Thread 
primitives to a bunch of threads at once. Several of these primitives have been deprecated, and 
the remainder are infrequently used. On balance, thread groups don't provide much in the way 
of useful functionality. 

In an ironic twist, the ThreadGroup API is weak from a thread safety standpoint. To get a list 
of the active threads in a thread group, you must invoke the enumerate method, which takes 
as a parameter an array large enough to hold all the active threads. The activeCount method 
returns the number of active threads in a thread group, but there is no guarantee that this count 
will still be accurate once an array has been allocated and passed to the enumerate method. If 
the array is too small, the enumerate method silently ignores any extra threads. 

The API to get a list of the subgroups of a thread group is similarly flawed. While these 
problems could have been fixed with the addition of new methods, they haven't been fixed 
because there is no real need; thread groups are largely obsolete. 

To summarize, thread groups don't provide much in the way of useful functionality, and much 
of the functionality they do provide is flawed. Thread groups are best viewed as 
an unsuccessful experiment, and you may simply ignore their existence. If you are designing 
a class that deals with logical groups of threads, just store the Thread references comprising 
each logical group in an array or collection. The alert reader may notice that this advice 
appears to contradict that of Item 30, “Know and use the libraries.” In this instance, Item 30 is 
wrong. 
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There is a minor exception to the advice that you should simply ignore thread groups. One 
small piece of functionality is available only in the ThreadGroup API. 
The ThreadGroup.uncaughtException method is automatically invoked when a thread in 
the group throws an uncaught exception. This method is used by the “execution environment” 
to respond appropriately to uncaught exceptions. The default implementation prints a stack 
trace to the standard error stream. You may occasionally wish to override this 
implementation, for example, to direct the stack trace to an application-specific log. 
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Chapter 10. Serialization 
This chapter concerns the object serialization API, which provides a framework for encoding 
objects as byte streams and reconstructing objects from their byte-stream encodings. 
Encoding an object as a byte stream is known as serializing the object; the reverse process is 
known as deserializing it. Once an object has been serialized, its encoding can be transmitted 
from one running virtual machine to another or stored on disk for later deserialization. 
Serialization provides the standard wire-level object representation for remote 
communication, and the standard persistent data format for the JavaBeans™ component 
architecture. 

Item 54: Implement Serializable judiciously 

Allowing a class's instances to be serialized can be as simple as adding the words 
“implements Serializable” to its declaration. Because this is so easy to do, there is 
a common misconception that serialization requires little effort on the part of the programmer. 
The truth is far more complex. While the immediate cost to make a class serializable can be 
negligible, the long-term costs are often substantial. 

A major cost of implementing Serializable is that it decreases the flexibility to change 
a class's implementation once it has been released.  When a class implements 
Serializable, its byte-stream encoding (or serialized form) becomes part of its exported 
API. Once you distribute a class widely, you are generally required to support the serialized 
form forever, just as you are required to support all other parts of the exported API. If you do 
not go to the effort to design a custom serialized form, but merely accept the default, 
the serialized form will forever be tied to the class's original internal representation. In other 
words, if you accept the default serialized form, the class's private and package-private 
instance fields become part of its exported API, and the practice of minimizing access to 
fields (Item 12) loses its effectiveness as a tool for information hiding. 

If you accept the default serialized form and later change the class's internal representation, 
an incompatible change in the serialized form may result. Clients attempting to serialize 
an instance using an old version of the class and deserialize it using the new version will 
experience program failures. It is possible to change the internal representation while 
maintaining the original serialized form (using ObjectOutputStream.putFields and 
ObjectInputStream.readFields), but it can be difficult and leaves visible warts in 
the source code. Therefore you should carefully design a high-quality serialized form that you 
are willing to live with for the long haul (Item 55). Doing so will add to the cost of 
development, but it is worth the effort. Even a well-designed serialized form places 
constraints on the evolution of a class; an ill-designed serialized form can be crippling. 

A simple example of the constraints on evolution that accompany serializability concerns 
stream unique identifiers, more commonly known as serial version UIDs. Every serializable 
class has a unique identification number associated with it. If you do not specify 
the identification number explicitly by declaring a private static final long field named 
serialVersionUID, the system automatically generates it by applying a complex 
deterministic procedure to the class. The automatically generated value is affected by 
the class's name, the names of the interfaces it implements, and all of its public and protected 
members. If you change any of these things in any way, for example, by adding a trivial 
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convenience method, the automatically generated serial version UID changes. If you fail to 
declare an explicit serial version UID, compatibility will be broken. 

A second cost of implementing Serializable is that it increases the likelihood of bugs 
and security holes.  Normally, objects are created using constructors; serialization is an 
extralinguistic mechanism for creating objects. Whether you accept the default behavior or 
override it, deserialization is a “hidden constructor” with all of the same issues as other 
constructors. Because there is no explicit constructor, it is easy to forget that you must ensure 
that deserialization guarantees all of the invariants established by real constructors and that it 
does not allow an attacker to gain access to the internals of the object under construction. 
Relying on the default deserialization mechanism can easily leave objects open to invariant 
corruption and illegal access (Item 56). 

A third cost of implementing Serializable is that it increases the testing burden 
associated with releasing a new version of a class.  When a serializable class is revised, it is 
important to check that it is possible to serialize an instance in the new release, and deserialize 
it in old releases, and vice versa. The amount of testing required is thus proportional to the 
product of the number of serializable classes and the number of releases, which can be large. 
These tests cannot be constructed automatically because, in addition to binary compatibility, 
you must test for semantic compatibility. In other words, you must ensure both that the 
serialization-deserialization process succeeds and that it results in a faithful replica of the 
original object. The greater the change to a serializable class, the greater the need for testing. 
The need is reduced if a custom serialized form is carefully designed when the class is first 
written (Item 55), but it does not vanish entirely. 

Implementing the Serializable interface is not a decision to be undertaken lightly.  It 
offers real benefits: It is essential if a class is to participate in some framework that relies on 
serialization for object transmission or persistence. Furthermore, it greatly eases the use of a 
class as a component in another class that must implement Serializable. There are, 
however, many real costs associated with implementing Serializable. Each time you 
implement a class, weigh the costs against the benefits. As a rule of thumb, value classes such 
as Date and BigInteger should implement Serializable, as should most collection 
classes. Classes representing active entities, such as thread pools, should rarely implement 
Serializable. As of release 1.4, there is an XML-based JavaBeans persistence mechanism, 
so it is no longer necessary for Beans to implement Serializable. 

Classes designed for inheritance (Item 15) should rarely implement Serializable, and 
interfaces should rarely extend it.  Violating this rule places a significant burden on anyone 
who extends the class or implements the interface. There are times when it is appropriate to 
violate the rule. For example, if a class or interface exists primarily to participate in some 
framework that requires all participants to implement Serializable, then it makes perfect 
sense for the class or interface to implement or extend Serializable. 

There is one caveat regarding the decision not to implement Serializable. If a class that is 
designed for inheritance is not serializable, it may be impossible to write a serializable 
subclass. Specifically, it will be impossible if the superclass does not provide an accessible 
parameterless constructor. Therefore you should consider providing a parameterless 
constructor on nonserializable classes designed for inheritance. Often this requires no 
effort because many classes designed for inheritance have no state, but this is not always the 
case. 
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It is best to create objects with all of their invariants already established (Item 13). If client-
provided information is required to establish these invariants, this precludes the use of 
a parameterless constructor. Naively adding a parameterless constructor and an initialization 
method to a class whose remaining constructors establish its invariants would complicate the 
class's state-space, increasing the likelihood of error. 

Here is a way to add a parameterless constructor to a nonserializable extendable class that 
avoids these deficiencies. Suppose the class has one constructor: 

 
public AbstractFoo(int x, int y) { ... } 

The following transformation adds a protected parameterless constructor and an initialization 
method. The initialization method has the same parameters as the normal constructor and 
establishes the same invariants: 

 
//Nonserializable stateful class allowing serializable subclass 
public abstract class AbstractFoo { 
    private int x, y; // The state 
    private boolean initialized = false; 
 
    public AbstractFoo(int x, int y) { initialize(x, y); } 
 
    /** 
     * This constructor and the following method allow subclass's 
     * readObject method to initialize our internal state. 
     */ 
    protected AbstractFoo() { } 
 
    protected final void initialize(int x, int y) { 
        if (initialized) 
            throw new IllegalStateException( 
                "Already initialized"); 
        this.x = x; 
        this.y = y; 
        ... // Do anything else the original constructor did 
        initialized = true; 
    } 
 
    /** 
     * These methods provide access to internal state so it can 
     * be manually serialized by subclass's writeObject method. 
     */ 
    protected final int getX() { return x; } 
    protected final int getY() { return y; } 
 
    // Must be called by all public instance methods 
    private void checkInit() throws IllegalStateException { 
        if (!initialized) 
            throw new IllegalStateException("Uninitialized"); 
    } 
    ... // Remainder omitted 
} 

All instance methods in AbstractFoo must invoke checkInit before going about their 
business. This ensures that method invocations fail quickly and cleanly if a poorly written 
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subclass fails to initialize an instance. With this mechanism in place, it is reasonably 
straightforward to implement a serializable subclass: 

 
//Serializable subclass of nonserializable stateful class 
public class Foo extends AbstractFoo implements Serializable { 
    private void readObject(ObjectInputStream s) 
            throws IOException, ClassNotFoundException { 
        s.defaultReadObject(); 
 
        // Manually deserialize and initialize superclass state 
        int x = s.readInt(); 
        int y = s.readInt(); 
        initialize(x, y); 
    } 
 
    private void writeObject(ObjectOutputStream s) 
            throws IOException { 
        s.defaultWriteObject(); 
 
        // Manually serialize superclass state 
        s.writeInt(getX()); 
        s.writeInt(getY()); 
    } 
 
    // Constructor does not use any of the fancy mechanism 
    public Foo(int x, int y) { super(x, y); } 
} 

Inner classes (Item 18) should rarely, if ever, implement Serializable.  They use 
compiler-generated synthetic fields to store references to enclosing instances and to store 
values of local variables from enclosing scopes. How these fields correspond to the class 
definition is unspecified, as are the names of anonymous and local classes. Therefore, the 
default serialized form of an inner class is ill-defined. A static member class can, however, 
implement Serializable. 

To summarize, the ease of implementing Serializable is specious. Unless a class is to be 
thrown away after a short period of use, implementing Serializable is a serious 
commitment that should be made with care. Extra caution is warranted if a class is designed 
for inheritance. For such classes, an intermediate design point between implementing 
Serializable and prohibiting it in subclasses is to provide an accessible parameterless 
constructor. This design point permits, but does not require, subclasses to implement 
Serializable. 

Item 55:Consider using a custom serialized form 

When you are producing a class under time pressure, it is generally appropriate to concentrate 
your efforts on designing the best API. Sometimes this means releasing a “throwaway” 
implementation, which you know you'll replace in a future release. Normally this is not a 
problem, but if the class implements Serializable and uses the default serialized form, 
you'll never be able to escape completely from the throwaway implementation. It will dictate 
the serialized form forever. This is not a theoretical problem. It happened to several classes in 
the Java platform libraries, such as BigInteger. 
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Do not accept the default serialized form without first considering whether it is 
appropriate.  Accepting the default serialized form should be a conscious decision on your 
part that this encoding is reasonable from the standpoint of flexibility, performance, and 
correctness. Generally speaking, you should accept the default serialized form only if it is 
largely identical to the encoding that you would choose if you were designing a custom 
serialized form. 

The default serialized form of an object is a reasonably efficient encoding of the physical 
representation of the object graph rooted at the object. In other words, it describes the data 
contained in the object and in every object that is reachable from this object. It also describes 
the topology by which all of these objects are interlinked. The ideal serialized form of an 
object contains only the logical data represented by the object. It is independent of the 
physical representation. 

The default serialized form is likely to be appropriate if an object's physical 
representation is identical to its logical content.  For example, the default serialized form 
would be reasonable for the following class, which represents a person's name: 

 
//Good candidate for default serialized form 
public class Name implements Serializable { 
    /** 
     * Last name.  Must be non-null. 
     * @serial 
     */ 
    private String lastName; 
 
    /** 
     * First name.  Must be non-null. 
     * @serial 
     */ 
    private String firstName; 
    /** 
     * Middle initial, or '\u0000' if name lacks middle initial. 
     * @serial 
     */ 
    private char   middleInitial; 
 
    ... // Remainder omitted 
} 

Logically speaking, a name consists of two strings that represent a last name and first name 
and a character that represents a middle initial. The instance fields in Name precisely mirror 
this logical content. 

Even if you decide that the default serialized form is appropriate, you often must 
provide a readObject method to ensure invariants and security.  In the case of Name, the 
readObject method could ensure that lastName and firstName were non-null. This issue is 
discussed at length in Item 56. 

Note that there are documentation comments on the lastName, firstName, and 
middleInitial fields, even though they are private. That is because these private fields 
define a public API, the serialized form of the class, and this public API must be documented. 
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The presence of the @serial tag tells the Javadoc utility to place this documentation on a 
special page that documents serialized forms. 

Near the opposite end of the spectrum from Name, consider the following class, which 
represents a list of strings (ignoring for the moment that you'd be better off using one of the 
standard List implementations in the library): 

 
//Awful candidate for default serialized form 
public class StringList implements Serializable { 
    private int size = 0; 
    private Entry head = null; 
 
    private static class Entry implements Serializable { 
        String data; 
        Entry  next; 
        Entry  previous; 
    } 
 
    ... // Remainder omitted 
} 

Logically speaking, this class represents a sequence of strings. Physically, it represents the 
sequence as a doubly linked list. If you accept the default serialized form, the serialized form 
will painstakingly mirror every entry in the linked list and all the links between the entries, in 
both directions. 

Using the default serialized form when an object's physical representation differs 
substantially from its logical data content has four disadvantages: 

• It permanently ties the exported API to the internal representation.  In the above 
example, the private StringList.Entry class becomes part of the public API. If the 
representation is changed in a future release, the StringList class will still need to 
accept the linked-list representation on input and generate it on output. The class will 
never be rid of the code to manipulate linked lists, even if it doesn't use them any 
more. 

• It can consume excessive space.  In the above example, the serialized form 
unnecessarily represents each entry in the linked list and all the links. These entries 
and links are mere implementation details not worthy of inclusion in the serialized 
form. Because the serialized form is excessively large, writing it to disk or sending it 
across the network will be excessively slow. 

• It can consume excessive time.  The serialization logic has no knowledge of the 
topology of the object graph, so it must go through an expensive graph traversal. In the 
example above, it would be sufficient simply to follow the next references. 

• It can cause stack overflows.  The default serialization procedure performs a 
recursive traversal of the object graph, which can cause stack overflows even for 
moderately sized object graphs. Serializing a StringList instance with 1200 elements 
causes the stack to overflow on my machine. The number of elements required to 
cause this problem may vary depending on the JVM implementation; some 
implementations may not have this problem at all. 
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A reasonable serialized form for StringList is simply the number of strings in the list, 
followed by the strings themselves. This constitutes the logical data represented by a 
StringList, stripped of the details of its physical representation. Here is a revised version of 
StringList containing writeObject and readObject methods implementing this serialized 
form. As a reminder, the transient modifier indicates that an instance field is to be omitted 
from a class's default serialized form: 

 
//StringList with a reasonable custom serialized form 
public class StringList implements Serializable { 
    private transient int size   = 0; 
    private transient Entry head = null; 
 
    // No longer Serializable! 
    private static class Entry { 
        String data; 
        Entry  next; 
        Entry  previous; 
    } 
 
    // Appends the specified string to the list 
    public void add(String s) { ... } 
 
    /** 
     * Serialize this <tt>StringList</tt> instance. 
     * 
     * @serialData The size of the list (the number of strings 
     * it contains) is emitted (<tt>int</tt>), followed by all of 
     * its elements (each a <tt>String</tt>), in the proper 
     * sequence. 
     */ 
    private void writeObject(ObjectOutputStream s) 
            throws IOException { 
        s.defaultWriteObject(); 
        s.writeInt(size); 
 
       // Write out all elements in the proper order. 
       for (Entry e = head; e != null; e = e.next) 
           s.writeObject(e.data); 
    } 
 
    private void readObject(ObjectInputStream s) 
            throws IOException, ClassNotFoundException { 
        s.defaultReadObject(); 
        int size = s.readInt(); 
 
        // Read in all elements and insert them in list 
        for (int i = 0; i < size; i++) 
            add((String)s.readObject()); 
     } 
 
    ... // Remainder omitted 
} 

Note that the writeObject method invokes defaultWriteObject and the readObject 
method invokes defaultReadObject, even though all of StringList's fields are transient. If 
all instance fields are transient, it is technically permissible to dispense with invoking 
defaultWriteObject and defaultReadObject, but it is not recommended. Even if all 
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instance fields are transient, invoking defaultWriteObject affects the serialized form, 
resulting in greatly enhanced flexibility. The resulting serialized form makes it possible to add 
nontransient instance fields in a later release while preserving backward and forward 
compatibility. If an instance is serialized in a later version and deserialized in an earlier 
version, the added fields will be ignored. Had the earlier version's readObject method failed 
to invoke defaultReadObject, the deserialization would fail with 
a StreamCorruptedException. 

Note that there is a documentation comment on the writeObject method, even though it is 
private. This is analogous to the documentation comment on the private fields in the Name 
class. This private method defines a public API, the serialized form, and that public API 
should be documented. Like the @serial tag for fields, the @serialData tag for methods 
tells the Javadoc utility to place this documentation on the serialized forms page. 

To lend some sense of scale to the earlier performance discussion, if the average string length 
is ten characters, the serialized form of the revised version of StringList occupies about half 
as much space as the serialized form of the original. On my machine, serializing the revised 
version of StringList is about two and one half times as fast as serializing the original 
version, again with a string length of ten. Finally, there is no stack overflow problem in 
the revised form, hence no practical upper limit to the size of a StringList that can be 
serialized. 

While the default serialized form would be bad for StringList, there are classes for which it 
would be far worse. For StringList, the default serialized form is inflexible and performs 
badly, but it is correct in the sense that serializing and deserializing a StringList instance 
yields a faithful copy of the original object with all of its invariants intact. This is not the case 
for any object whose invariants are tied to implementation-specific details. 

For example, consider the case of a hash table. The physical representation is a sequence of 
hash buckets containing key-value entries. Which bucket an entry is placed in is a function of 
the hash code of the key, which is not, in general, guaranteed to be the same from JVM 
implementation to JVM implementation. In fact, it isn't even guaranteed to be the same from 
run to run on the same JVM implementation. Therefore accepting the default serialized form 
for a hash table would constitute a serious bug. Serializing and deserializing the hash table 
could yield an object whose invariants were seriously corrupt. 

Whether or not you use the default serialized form, every instance field that is not labeled 
transient will be serialized when the defaultWriteObject method is invoked. Therefore 
every instance field that can be made transient should be made so. This includes redundant 
fields, whose values can be computed from “primary data fields,” such as a cached hash 
value. It also includes fields whose values are tied to one particular run of the JVM, such as 
a long field representing a pointer to a native data structure. Before deciding to make a field 
nontransient, convince yourself that its value is part of the logical state of the object. If 
you use a custom serialized form, most or all of the instance fields should be labeled 
transient, as in the StringList example shown above. 

If you are using the default serialized form and you have labeled one or more fields 
transient, remember that these fields will be initialized to their default values when 
an instance is deserialized: null for object reference fields, zero for numeric primitive fields, 
and false for boolean fields [JLS, 4.5.5]. If these values are unacceptable for any transient 
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fields, you must provide a readObject method that invokes the defaultReadObject method 
and then restores transient fields to acceptable values (Item 56). Alternatively, these fields can 
be lazily initialized the first time they are used. 

Regardless of what serialized form you choose, declare an explicit serial version UID in 
every serializable class you write.  This eliminates the serial version UID as a potential 
source of incompatibility (Item 54). There is also a small performance benefit. If no serial 
version UID is provided, an expensive computation is required to generate one at run time. 

Declaring a serial version UID is simple. Just add this line to your class: 

 
private static final long serialVersionUID = randomLongValue ; 

It doesn't much matter which value you choose for randomLongValue. Common practice 
dictates that you generate the value by running the serialver utility on the class, but it's also 
fine to pick a number out of thin air. If you ever want to make a new version of the class that 
is incompatible with existing versions, merely change the value in the declaration. This will 
cause attempts to deserialize serialized instances of previous versions to fail with an 
InvalidClassException. 

To summarize, when you have decided that a class should be serializable (Item 54), think hard 
about what the serialized form should be. Only use the default serialized form if it is a 
reasonable description of the logical state of the object; otherwise design a custom serialized 
form that aptly describes the object. You should allocate as much time to designing the 
serialized form of a class as you allocate to designing its exported methods. Just as you cannot 
eliminate exported methods from future versions, you cannot eliminate fields from the 
serialized form; they must be preserved forever to ensure serialization compatibility. 
Choosing the wrong serialized form can have permanent, negative impact on the complexity 
and performance of a class. 

Item 56:Write readObject methods defensively 

Item 24 contains an immutable date-range class containing mutable private date fields. The 
class goes to great lengths to preserve its invariants and its immutability by defensively 
copying Date objects in its constructor and accessors. Here is the class: 

 
//Immutable class that uses defensive copying 
public final class Period { 
    private final Date start; 
    private final Date end; 
 
    /** 
     * @param start the beginning of the period. 
     * @param end the end of the period; must not precede start. 
     * @throws IllegalArgument if start is after end. 
     * @throws NullPointerException if start or end is null. 
     */ 
    public Period(Date start, Date end) { 
        this.start = new Date(start.getTime()); 
        this.end   = new Date(end.getTime()); 
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        if (this.start.compareTo(this.end) > 0) 
          throw new IllegalArgumentException(start +" > "+ end); 
    } 
 
    public Date start () { return (Date) start.clone(); } 
 
    public Date end () { return (Date) end.clone(); } 
 
    public String toString() { return start + " - " + end; } 
 
    ... // Remainder omitted 
} 

Suppose you decide that you want this class to be serializable. Because the physical 
representation of a Period object exactly mirrors its logical data content, it is not 
unreasonable to use the default serialized form (Item 55). Therefore, it might seem that all you 
have to do to make the class serializable is to add the words “implements Serializable” to 
the class declaration. If you did so, however, the class would no longer guarantee its critical 
invariants. 

The problem is that the readObject method is effectively another public constructor, and it 
demands all of the same care as any other constructor. Just as a constructor must check its 
arguments for validity (Item 23) and make defensive copies of parameters where appropriate 
(Item 24), so must a readObject method. If a readObject method fails to do either of these 
things, it is a relatively simple matter for an attacker to violate the class's invariants. 

Loosely speaking, readObject is a constructor that takes a byte stream as its sole parameter. 
In normal use, the byte stream is generated by serializing a normally constructed instance. 
The problem arises when readObject is presented with a byte stream that is artificially 
constructed to generate an object that violates the invariants of its class. Assume that we 
simply added “implements Serializable” to the class declaration for Period. This ugly 
program generates a Period instance whose end precedes its start: 

 
public class BogusPeriod { 
    //Byte stream could not have come from real Period instance 
    private static final byte[] serializedForm = new byte[] { 
    (byte)0xac, (byte)0xed, 0x00, 0x05, 0x73, 0x72, 0x00, 0x06, 
    0x50, 0x65, 0x72, 0x69, 0x6f, 0x64, 0x40, 0x7e, (byte)0xf8, 
    0x2b, 0x4f, 0x46, (byte)0xc0, (byte)0xf4, 0x02, 0x00, 0x02, 
    0x4c, 0x00, 0x03, 0x65, 0x6e, 0x64, 0x74, 0x00, 0x10, 0x4c, 
    0x6a, 0x61, 0x76, 0x61, 0x2f, 0x75, 0x74, 0x69, 0x6c, 0x2f, 
    0x44, 0x61, 0x74, 0x65, 0x3b, 0x4c, 0x00, 0x05, 0x73, 0x74, 
    0x61, 0x72, 0x74, 0x71, 0x00, 0x7e, 0x00, 0x01, 0x78, 0x70, 
    0x73, 0x72, 0x00, 0x0e, 0x6a, 0x61, 0x76, 0x61, 0x2e, 0x75, 
    0x74, 0x69, 0x6c, 0x2e, 0x44, 0x61, 0x74, 0x65, 0x68, 0x6a, 
    (byte)0x81, 0x01, 0x4b, 0x59, 0x74, 0x19, 0x03, 0x00, 0x00, 
    0x78, 0x70, 0x77, 0x08, 0x00, 0x00, 0x00, 0x66, (byte)0xdf, 
    0x6e, 0x1e, 0x00, 0x78, 0x73, 0x71, 0x00, 0x7e, 0x00, 0x03, 
    0x77, 0x08, 0x00, 0x00, 0x00, (byte)0xd5, 0x17, 0x69, 0x22, 
    0x00, 0x78 }; 
 
    public static void main(String[] args) { 
        Period p = (Period) deserialize(serializedForm); 
        System.out.println(p); 
    } 
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    //Returns the object with the specified serialized form 
    public static Object deserialize(byte[] sf) { 
        try { 
            InputStream is = new ByteArrayInputStream(sf); 
            ObjectInputStream ois = new ObjectInputStream(is); 
            return ois.readObject(); 
        } catch (Exception e) { 
            throw new IllegalArgumentException(e.toString()); 
        } 
    } 
} 

The byte array literal used to initialize serializedForm was generated by serializing a 
normal Period instance and hand-editing the resulting byte stream. The details of the stream 
are unimportant to the example, but if you're curious, the serialization byte stream format is 
described in the Java™ Object Serialization Specification [Serialization, 6]. If you run this 
program, it prints “Fri Jan 01 12:00:00 PST 1999 - Sun Jan 01 12:00:00 PST 1984.” 
Making Period serializable enabled us to create an object that violates its class invariants. To 
fix this problem, provide a readObject method for Period that calls defaultReadObject 
and then checks the validity of the deserialized object. If the validity check fails, the 
readObject method throws an InvalidObjectException, preventing the deserialization 
from completing: 

 
private void readObject(ObjectInputStream s) 
        throws IOException, ClassNotFoundException { 
    s.defaultReadObject(); 
 
    // Check that our invariants are satisfied 
    if (start.compareTo(end) > 0) 
        throw new InvalidObjectException(start +" after "+ end); 
} 

While this fix prevents an attacker from creating an invalid Period instance, there is a more 
subtle problem still lurking. It is possible to create a mutable Period instance by fabricating a 
byte stream that begins with a byte stream representing a valid Period instance and then 
appends extra references to the private Date fields internal to the Period instance. The 
attacker reads the Period instance from the ObjectInputStream and then reads the “rogue 
object references” that were appended to the stream. These references give the attacker access 
to the objects referenced by the private Date fields within the Period object. By mutating 
these Date instances, the attacker can mutate the Period instance. The following class 
demonstrates this attack: 

 
public class MutablePeriod { 
    // A period instance 
    public final Period period; 
 
    // period's start field, to which we shouldn't have access 
    public final Date start; 
 
    // period's end field, to which we shouldn't have access 
    public final Date end; 
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    public MutablePeriod() { 
        try { 
            ByteArrayOutputStream bos = 
                new ByteArrayOutputStream(); 
            ObjectOutputStream out = 
                new ObjectOutputStream(bos); 
 
            // Serialize a valid Period instance 
            out.writeObject(new Period(new Date(), new Date())); 
 
            /* 
             * Append rogue "previous object refs" for internal 
             * Date fields in Period. For details, see "Java 
             * Object Serialization Specification," Section 6.4. 
             */ 
            byte[] ref = { 0x71, 0, 0x7e, 0, 5 }; // Ref #5 
            bos.write(ref); // The start field 
            ref[4] = 4;     // Ref # 4 
            bos.write(ref); // The end field 
 
            // Deserialize Period and "stolen" Date references 
            ObjectInputStream in = new ObjectInputStream( 
            new ByteArrayInputStream(bos.toByteArray())); 
            period = (Period) in.readObject(); 
            start  = (Date)   in.readObject(); 
            end    = (Date)   in.readObject(); 
        } catch (Exception e) { 
            throw new RuntimeException(e.toString()); 
        } 
    } 
} 

To see the attack in action, run the following program: 

 
public static void main(String[] args) { 
    MutablePeriod mp = new MutablePeriod(); 
    Period p = mp.period; 
    Date pEnd = mp.end; 
 
    // Let's turn back the clock 
    pEnd.setYear(78); 
    System.out.println(p); 
 
    // Bring back the 60's! 
    pEnd.setYear(69); 
    System.out.println(p); 
} 

Running this program produces the following output: 

 
Wed Mar 07 23:30:01 PST 2001 - Tue Mar 07 23:30:01 PST 1978 
Wed Mar 07 23:30:01 PST 2001 - Fri Mar 07 23:30:01 PST 1969 

While the Period instance is created with its invariants intact, it is possible to modify its 
internal components at will. Once in possession of a mutable Period instance, an attacker 
might cause great harm by passing the instance on to a class that depends on Period's 
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immutability for its security. This is not so farfetched: There are classes that depend on 
String's immutability for their security. 

The source of the problem is that Period's readObject method is not doing enough defensive 
copying. When an object is deserialized, it is critical to defensively copy any field 
containing an object reference that a client must not possess. Therefore every serializable 
immutable class containing private mutable components must defensively copy these 
components in its readObject method. The following readObject method suffices to ensure 
Period's invariants and to maintain its immutability: 

 
private void readObject(ObjectInputStream s) 
    throws IOException, ClassNotFoundException { 
    s.defaultReadObject(); 
 
    // Defensively copy our mutable components 
    start = new Date(start.getTime()); 
    end   = new Date(end.getTime()); 
 
    // Check that our invariants are satisfied 
    if (start.compareTo(end) > 0) 
        throw new InvalidObjectException(start +" after "+ end); 
} 

Note that the defensive copy is performed prior to the validity check and that we did not use 
Date's clone method to perform the defensive copy. Both of these details are required to 
protect Period against attack (Item 24). Note also that defensive copying is not possible for 
final fields. To use the readObject method, we must make the start and end fields nonfinal. 
This is unfortunate, but it is clearly the lesser of two evils. With the new readObject method 
in place and the final modifier removed from the start and end fields, the MutablePeriod 
class is rendered ineffective. The above attack program now generates this output: 

 
Thu Mar 08 00:03:45 PST 2001 - Thu Mar 08 00:03:45 PST 2001 
Thu Mar 08 00:03:45 PST 2001 - Thu Mar 08 00:03:45 PST 2001 

There is a simple litmus test for deciding whether the default readObject method is 
acceptable. Would you feel comfortable adding a public constructor that took as parameters 
the values for each nontransient field in your object and stored the values in the fields with no 
validation whatsoever? If you can't answer yes to this question, then you must provide an 
explicit readObject method, and it must perform all of the validity checking and defensive 
copying that would be required of a constructor. 

There is one other similarity between readObject methods and constructors, concerning 
nonfinal serializable classes. A readObject method must not invoke an overridable method, 
directly or indirectly (Item 15). If this rule is violated and the method is overridden, the 
overriding method will run before the subclass's state has been deserialized. A program failure 
is likely to result. 

To summarize, any time you write a readObject method, adopt the mind-set that you are 
writing a public constructor that must produce a valid instance regardless of what byte stream 
it is given. Do not assume that the byte stream represents an actual serialized instance. While 
the examples in this item concern a class that uses the default serialized form, all of the issues 
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that were raised apply equally to classes with custom serialized forms. Here, in summary 
form, are the guidelines for writing a bulletproof readObject method: 

• For classes with object reference fields that must remain private, defensively copy 
each object that is to be stored in such a field. Mutable components of immutable 
classes fall into this category. 

• For classes with invariants, check invariants and throw an InvalidObjectException 
if a check fails. The checks should follow any defensive copying. 

• If an entire object graph must be validated after it is deserialized, the 
ObjectInputValidation interface should be used. The use of this interface is beyond 
the scope of this book. A sample use may be found in The Java Class Libraries, 
Second Edition, Volume 1 [Chan98,]. 

• Do not invoke any overridable methods in the class, directly or indirectly. 

The readResolve method may be used as an alternative to a defensive readObject method. 
This alternative is discussed in Item 57. 

Item 57: Provide a readResolve method when necessary 

Item 2 describes the Singleton pattern and gives the following example of a singleton class. 
This class restricts access to its constructor to ensure that only a single instance is ever 
created: 

 
public class Elvis { 
    public static final Elvis INSTANCE = new Elvis(); 
 
    private Elvis() { 
        ... 
    } 
 
    ...  // Remainder omitted 
} 

As noted in Item 2, this class would no longer be a singleton if the words “implements 
Serializable” were added to its declaration. It doesn't matter whether the class uses the 
default serialized form or a custom serialized form (Item 55), nor does it matter whether the 
class provides an explicit readObject method (Item 56). Any readObject method, whether 
explicit or default, returns a newly created instance, which will not be the same instance that 
was created at class initialization time. Prior to the 1.2 release, it was impossible to write a 
serializable singleton class. 

In the 1.2 release, the readResolve feature was added to the serialization facility 
[Serialization, 3.6]. If the class of an object being deserialized defines a readResolve method 
with the proper declaration, this method is invoked on the newly created object after it is 
deserialized. The object reference returned by this method is then returned in lieu of the newly 
created object. In most uses of this feature, no reference to the newly created object is 
retained; the object is effectively stillborn, immediately becoming eligible for garbage 
collection. 
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If the Elvis class is made to implement Serializable, the following readResolve method 
suffices to guarantee the singleton property: 

 
private Object readResolve() throws ObjectStreamException { 
    // Return the one true Elvis and let the garbage collector 
    // take care of the Elvis impersonator. 
    return INSTANCE; 
} 

This method ignores the deserialized object, simply returning the distinguished Elvis 
instance created when the class was initialized. Therefore the serialized form of an Elvis 
instance need not contain any real data; all instance fields should be marked transient. This 
applies not only to Elvis, but to all singletons. 

A readResolve method is necessary not only for singletons, but for all other instance-
controlled classes, in other words, for all classes that strictly control instance creation to 
maintain some invariant. Another example of an instance-controlled class is a typesafe enum 
(Item 21), whose readResolve method must return the canonical instance representing the 
specified enumeration constant. As a rule of thumb, if you are writing a serializable class that 
contains no public or protected constructors, consider whether it requires a readResolve 
method. 

A second use for the readResolve method is as a conservative alternative to the 
defensive readObject method recommended in Item 56.  In this approach, all validity 
checks and defensive copying are eliminated from the readObject method in favor of the 
validity checks and defensive copying provided by a normal constructor. If the default 
serialized form is used, the readObject method may be eliminated entirely. As explained in 
Item 56, this allows a malicious client to create an instance with compromised invariants. 
However, the potentially compromised deserialized instance is never placed into active 
service; it is simply mined for inputs to a public constructor or static factory and discarded. 

The beauty of this approach is that it virtually eliminates the extralinguistic component of 
serialization, making it impossible to violate any class invariants that were present before the 
class was made serializable. To make this technique concrete, the following readResolve 
method can be used in lieu of the defensive readObject method in the Period example in 
Item 56: 

 
// The defensive readResolve idiom 
private Object readResolve() throws ObjectStreamException { 
    return new Period(start, end); 
} 

This readResolve method stops both of the attacks described Item 56 dead in their tracks. 
The defensive readResolve idiom has several advantages over a defensive readObject. It is 
a mechanical technique for making a class serializable without putting its invariants at risk. It 
requires little code and little thought, and it is guaranteed to work. Finally, it eliminates the 
artificial restrictions that serialization places on the use of final fields. 

While the defensive readResolve idiom is not widely used, it merits serious 
consideration.  Its major disadvantage is that it is not suitable for classes that permit 
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inheritance outside of their own package. This is not an issue for immutable classes, as they 
are generally final (Item 13). A minor disadvantage of the idiom is that it slightly reduces 
deserialization performance because it entails creating an extra object. On my machine, it 
slows the deserialization of Period instances by about one percent when compared to a 
defensive readObject method. 

The accessibility of the readResolve method is significant.  If you place a readResolve 
method on a final class, such as a singleton, it should be private. If you place a readResolve 
method on a nonfinal class, you must carefully consider its accessibility. If it is private, it will 
not apply to any subclasses. If it is package-private, it will apply only to subclasses in the 
same package. If it is protected or public, it will apply to all subclasses that do not override it. 
If a readResolve method is protected or public and a subclass does not override it, 
deserializing a serialized subclass instance will produce a superclass instance, which is 
probably not what you want. 

The previous paragraph hints at the reason the readResolve method may not be substituted 
for a defensive readObject method in classes that permit inheritance. If the superclass's 
readResolve method were final, it would prevent subclass instances from being properly 
deserialized. If it were overridable, a malicious subclass could override it with a method 
returning a compromised instance. 

To summarize, you must use a readResolve method to protect the “instance-control 
invariants” of singletons and other instance-controlled classes. In essence, the readResolve 
method turns the readObject method from a de facto public constructor into a de facto public 
static factory. The readResolve method is also useful as a simple alternative to a defensive 
readObject method for classes that prohibit inheritance outside their package. 
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